International Journal of Cancer Management

Published by: Kowsar

Survival Prediction of Patients with Breast Cancer: Comparisons of Decision Tree and Logistic Regression Analysis

Somayeh Momenyan 1 , Ahmad Reza Baghestani 2 , Narges Momenyan 3 , * , Parisa Naseri 1 and Mohammad Esmaeil Akbari 4
Authors Information
1 PhD Candidate in Biostatistics, Department of Biostatistics, Paramedical Sciences Faculty, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2 Associate Professor, Paramedical Sciences Faculty, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3 Msc in Medical Informatics, Tarbiat Modares University, Tehran, Iran
4 Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Article information
  • International Journal of Cancer Management: July 2018, 11 (7); e9176
  • Published Online: February 28, 2018
  • Article Type: Research Article
  • Received: September 28, 2016
  • Revised: July 18, 2017
  • Accepted: February 7, 2018
  • DOI: 10.5812/ijcm.9176

To Cite: Momenyan S, Baghestani A R, Momenyan N, Naseri P, Akbari M E. Survival Prediction of Patients with Breast Cancer: Comparisons of Decision Tree and Logistic Regression Analysis, Int J Cancer Manag. 2018 ; 11(7):e9176. doi: 10.5812/ijcm.9176.

Abstract
Copyright © 2018, Cancer Research Center (CRC), Shahid Beheshti University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Methods
3. Results
4. Discussion
Acknowledgements
Footnotes
References
  • 1. Garcia-Laencina PJ, Abreu PH, Abreu MH, Afonoso N. Missing data imputation on the 5-year survival prediction of breast cancer patients with unknown discrete values. Comput Biol Med. 2015;59:125-33. doi: 10.1016/j.compbiomed.2015.02.006. [PubMed: 25725446].
  • 2. Baghestani AR, Moghaddam SS, Majd HA, Akbari ME, Nafissi N, Gohari K. Survival Analysis of Patients with Breast Cancer using Weibull Parametric Model. Asian Pac J Cancer Prev. 2015;16(18):8567-71. doi: 10.7314/APJCP.2015.16.18.8567. [PubMed: 26745118].
  • 3. Haghshenas MR, Mousavi T, Moosazadeh M, Afshari M. Human papillomavirus and breast cancer in Iran: a meta- analysis. Iran J Basic Med Sci. 2016;19(3):231-7. [PubMed: 27114791].
  • 4. Momenyan S, Sadeghifar M, Sarvi F, Khodadost M, Mosavi-Jarrahi A, Ghaffari ME, et al. Relationship between Urbanization and Cancer Incidence in Iran Using Quantile Regression. Asian Pac J Cancer Prev. 2016;17(S3):113-7. doi: 10.7314/APJCP.2016.17.S3.113. [PubMed: 27165247].
  • 5. Chao CM, Yu YW, Cheng BW, Kuo YL. Construction the model on the breast cancer survival analysis use support vector machine, logistic regression and decision tree. J Med Syst. 2014;38(10):106. doi: 10.1007/s10916-014-0106-1. [PubMed: 25119239].
  • 6. Ture M, Tokatli F, Kurt I. Using Kaplan–Meier analysis together with decision tree methods (C&RT, CHAID, QUEST, C4.5 and ID3) in determining recurrence-free survival of breast cancer patients. Expert Syst Appl. 2009;36(2):2017-26. doi: 10.1016/j.eswa.2007.12.002.
  • 7. Taghavi A, Fazeli Z, Vahedi M, Baghestani AR, Pourhoseingholi A, Barzegar F, et al. Increased trend of breast cancer mortality in Iran. Asian Pac J Cancer Prev. 2012;13(1):367-70. doi: 10.7314/APJCP.2012.13.1.367. [PubMed: 22502702].
  • 8. Bundred NJ. Prognostic and predictive factors in breast cancer. Cancer Treat Rev. 2001;27(3):137-42. doi: 10.1053/ctrv.2000.0207. [PubMed: 11417963].
  • 9. Davoodi SH, Malek-Shahabi T, Malekshahi-Moghadam A, Shahbazi R, Esmaeili S. Obesity as an important risk factor for certain types of cancer. Iran J Cancer Prev. 2013;6(4):186-94. [PubMed: 25250133].
  • 10. Delen D, Walker G, Kadam A. Predicting breast cancer survivability: a comparison of three data mining methods. Artif Intell Med. 2005;34(2):113-27. doi: 10.1016/j.artmed.2004.07.002. [PubMed: 15894176].
  • 11. Han J, Pei J, Kamber M. Data mining: concepts and techniques. Elsevier; 2011.
  • 12. Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J. 2015;13:8-17. doi: 10.1016/j.csbj.2014.11.005. [PubMed: 25750696].
  • 13. Austin PC. A comparison of regression trees, logistic regression, generalized additive models, and multivariate adaptive regression splines for predicting AMI mortality. Stat Med. 2007;26(15):2937-57. doi: 10.1002/sim.2770. [PubMed: 17186501].
  • 14. Austin PC, Tu JV, Ho JE, Levy D, Lee DS. Using methods from the data-mining and machine-learning literature for disease classification and prediction: a case study examining classification of heart failure subtypes. J Clin Epidemiol. 2013;66(4):398-407. doi: 10.1016/j.jclinepi.2012.11.008. [PubMed: 23384592].
  • 15. Zhang D, Salto-Tellez M, Putti TC, Do E, Koay ES. Reliability of tissue microarrays in detecting protein expression and gene amplification in breast cancer. Mod Pathol. 2003;16(1):79-84. doi: 10.1097/01.MP.0000047307.96344.93. [PubMed: 12527717].
  • 16. Bloom HJ, Richardson WW. Histological grading and prognosis in breast cancer; a study of 1409 cases of which 359 have been followed for 15 years. Br J Cancer. 1957;11(3):359-77. doi: 10.1038/bjc.1957.43. [PubMed: 13499785].
  • 17. Singletary SE, Allred C, Ashley P, Bassett LW, Berry D, Bland KI, et al. Revision of the American Joint Committee on Cancer staging system for breast cancer. J Clin Oncol. 2002;20(17):3628-36. doi: 10.1200/JCO.2002.02.026. [PubMed: 12202663].
  • 18. Fleming I, Cooper J, Henson D, Hutter R, Kennedy B, Murphy G. American joint committee on cancer. Cancer manual staging. 5 ed. 1997.
  • 19. Majidi Zolbanin H, Delen D, Hassan Zadeh A. Predicting overall survivability in comorbidity of cancers: A data mining approach. Decis Support Syst. 2015;74:150-61. doi: 10.1016/j.dss.2015.04.003.
  • 20. James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning. Springer; 2013.
  • 21. Mazzocco T, Hussain A. Novel logistic regression models to aid the diagnosis of dementia. Expert Syst Appl. 2012;39(3):3356-61. doi: 10.1016/j.eswa.2011.09.023.
  • 22. Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc. 1958;53(282):457-81. doi: 10.1080/01621459.1958.10501452.
  • 23. Hess KR, Abbruzzese MC, Lenzi R, Raber MN, Abbruzzese JL. Classification and regression tree analysis of 1000 consecutive patients with unknown primary carcinoma. Clin Cancer Res. 1999;5(11):3403-10. [PubMed: 10589751].
  • 24. Stark K. The application of non-parametric techniques to solve classification problems in complex data sets in veterinary epidemiology ? An example. Intell Data Anal. 1999;3(1):23-35. doi: 10.1016/s1088-467x(99)00003-7.
  • 25. Ture M, Tokatli F, Kurt Omurlu I. The comparisons of prognostic indexes using data mining techniques and Cox regression analysis in the breast cancer data. Expert Syst Appl. 2009;36(4):8247-54. doi: 10.1016/j.eswa.2008.10.014.
  • 26. Abadi A, Yavari P, Dehghani-Arani M, Alavi-Majd H, Ghasemi E, Amanpour F, et al. Cox models survival analysis based on breast cancer treatments. Iran J Cancer Prev. 2014;7(3):124-9. [PubMed: 25250162].
  • 27. Rezaianzadeh A, Peacock J, Reidpath D, Talei A, Hosseini SV, Mehrabani D. Survival analysis of 1148 women diagnosed with breast cancer in Southern Iran. BMC Cancer. 2009;9:168. doi: 10.1186/1471-2407-9-168. [PubMed: 19497131].
  • 28. Fisher B, Bauer M, Wickerham DL, Redmond CK, Fisher ER, Cruz AB, et al. Relation of number of positive axillary nodes to the prognosis of patients with primary breast cancer. An NSABP update. Cancer. 1983;52(9):1551-7. doi: 10.1002/1097-0142(19831101)52:9<1551::AID-CNCR2820520902>3.0.CO;2-3. [PubMed: 6352003].
  • 29. Galea MH, Blamey RW, Elston CE, Ellis IO. The Nottingham Prognostic Index in primary breast cancer. Breast Cancer Res Treat. 1992;22(3):207-19. doi: 10.1007/BF01840834. [PubMed: 1391987].
  • 30. Silvestrini R, Daidone MG, Luisi A, Boracchi P, Mezzetti M, Di Fronzo G, et al. Biologic and clinicopathologic factors as indicators of specific relapse types in node-negative breast cancer. J Clin Oncol. 1995;13(3):697-704. doi: 10.1200/JCO.1995.13.3.697. [PubMed: 7884430].
  • 31. Todd JH, Dowle C, Williams MR, Elston CW, Ellis IO, Hinton CP, et al. Confirmation of a prognostic index in primary breast cancer. Br J Cancer. 1987;56(4):489-92. doi: 10.1038/bjc.1987.230. [PubMed: 3689666].
  • 32. Baghestani AR, Moghaddam SS, Majd HA, Akbari ME, Nafissi N, Gohari K. Application of a Non-Mixture Cure Rate Model for Analyzing Survival of Patients with Breast Cancer. Asian Pac J Cancer Prev. 2015;16(16):7359-63. doi: 10.7314/APJCP.2015.16.16.7359. [PubMed: 26514537].
  • 33. Nixon AJ, Neuberg D, Hayes DF, Gelman R, Connolly JL, Schnitt S, et al. Relationship of patient age to pathologic features of the tumor and prognosis for patients with stage I or II breast cancer. J Clin Oncol. 1994;12(5):888-94. doi: 10.1200/JCO.1994.12.5.888. [PubMed: 8164038].
  • 34. Fourquet A, Campana F, Zafrani B, Mosseri V, Vielh P, Durand JC, et al. Prognostic factors of breast recurrence in the conservative management of early breast cancer: a 25-year follow-up. Int J Radiat Oncol Biol Phys. 1989;17(4):719-25. doi: 10.1016/0360-3016(89)90057-6. [PubMed: 2777661].
  • 35. Sauerbrei W, Hubner K, Schmoor C, Schumacher M. Validation of existing and development of new prognostic classification schemes in node negative breast cancer. German Breast Cancer Study Group. Breast Cancer Res Treat. 1997;42(2):149-63. doi: 10.1023/A:1005733404976. [PubMed: 9138604].
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments