International Journal of Cancer Management

Published by: Kowsar

Potential Anticarcinogenic Effects of Lactic Acid Bacteria and Probiotics in Detoxification of Process-Induced Food Toxicants

Nasim Khorshidian 1 , Mojtaba Yousefi Asli 1 , Hedayat Hosseini 2 , Mahdi Shadnoush 3 , 4 , * and Amir Mohammad Mortazavian 2
Authors Information
1 Department of Food Science and Technology, Student Research Commitee, Faculty of Nutrition Sciences, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
2 Department of Food Science and Technology, Faculty of Nutrition Sciences, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
3 Department of Clinical Nutrition, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
4 Department of Clinical Nutrition, School of Medicine, Semnan University of Medical Sciences, Semnan, IR Iran
Article information
  • Iranian Journal of Cancer Prevention: October 2016, 9 (5); e7920
  • Published Online: October 18, 2016
  • Article Type: Review Article
  • Received: August 5, 2016
  • Revised: September 22, 2016
  • Accepted: October 4, 2016
  • DOI: 10.17795/ijcp-7920

To Cite: Khorshidian N, Yousefi Asli M, Hosseini H, Shadnoush M, Mortazavian A M. Potential Anticarcinogenic Effects of Lactic Acid Bacteria and Probiotics in Detoxification of Process-Induced Food Toxicants, Int J Cancer Manag. 2016 ; 9(5):e7920. doi: 10.17795/ijcp-7920.

Abstract
Copyright © 2016, Iranian Journal of Cancer Prevention. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Context
2. Evidence Acquisition
3. Results
4. Conclusions
Acknowledgements
Footnotes
References
  • 1. Zoghi A, Khosravi-Darani K, Sohrabvandi S. Surface binding of toxins and heavy metals by probiotics. Mini Rev Med Chem. 2014; 14(1): 84-98[PubMed]
  • 2. Arab M, Sohrabvandi S, Mortazavian AM, Mohammadi R, Tavirani M. Reduction of aflatoxin in fermented milks during production and storage. Toxin Rev. 2012; 31(3-4): 44-53
  • 3. Topcu A, Bulat T. Removal of cadmium and lead from aqueous solution by Enterococcus faecium strains. J Food Sci. 2010; 75(1)-7[DOI][PubMed]
  • 4. Cho SS, Finocchiaro T. Handbook of prebiotics and probiotics ingredients: health benefits and food applications. 2009;
  • 5. Davoodi H, Esmaeili S, Mortazavian AM. Effects of milk and milk products consumption on cancer: a review. Comprehens Rev Food Sci Food Safety. 2013; 12(3): 249-64
  • 6. Boyle P, Ferlay J. Cancer incidence and mortality in Europe, 2004. Ann Oncol. 2005; 16(3): 481-8[DOI][PubMed]
  • 7. Walton GE, Gibson GR. Prebiotics and bowel cancer. Curr Topics Nutraceut Res. 2007; 5(1): 19
  • 8. Gonzalez CA, Riboli E. Diet and cancer prevention: Contributions from the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Eur J Cancer. 2010; 46(14): 2555-62[DOI][PubMed]
  • 9. Chong ES. A potential role of probiotics in colorectal cancer prevention: review of possible mechanisms of action. World J Microbiol Biotechnol. 2014; 30(2): 351-74[DOI][PubMed]
  • 10. Marmot M, Atinmo T, Byers T, Chen J, Hirohata T, Jackson A, et al. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. 2007;
  • 11. Riboli E, Norat T. Epidemiologic evidence of the protective effect of fruit and vegetables on cancer risk. Am J Clin Nutr. 2003; 78(3 Suppl): 559S-69S[PubMed]
  • 12. Larsson SC, Wolk A. Meat consumption and risk of colorectal cancer: a meta-analysis of prospective studies. Int J Cancer. 2006; 119(11): 2657-64[DOI][PubMed]
  • 13. Raman M, Ambalam P, Kondepudi KK, Pithva S, Kothari C, Patel AT, et al. Potential of probiotics, prebiotics and synbiotics for management of colorectal cancer. Gut Microbes. 2013; 4(3): 181-92[DOI][PubMed]
  • 14. Lee I, Tran M, Evans-Nguyen T, Stickle D, Kim S, Han J, et al. Detoxification of chlorella supplement on heterocyclic amines in Korean young adults. Environ Toxicol Pharmacol. 2015; 39(1): 441-6[DOI][PubMed]
  • 15. Miller PE, Lazarus P, Lesko SM, Cross AJ, Sinha R, Laio J, et al. Meat-related compounds and colorectal cancer risk by anatomical subsite. Nutr Cancer. 2013; 65(2): 202-26[DOI][PubMed]
  • 16. Knasmuller S, Steinkellner H, Hirschl AM, Rabot S, Nobis EC, Kassie F. Impact of bacteria in dairy products and of the intestinal microflora on the genotoxic and carcinogenic effects of heterocyclic aromatic amines. Mutat Res. 2001; 480-481: 129-38[PubMed]
  • 17. Geier MS, Butler RN, Howarth GS. Probiotics, prebiotics and synbiotics: a role in chemoprevention for colorectal cancer? Cancer Biol Ther. 2006; 5(10): 1265-9[PubMed]
  • 18. Liong MT. Roles of probiotics and prebiotics in colon cancer prevention: Postulated mechanisms and in-vivo evidence. Int J Mol Sci. 2008; 9(5): 854-63[DOI][PubMed]
  • 19. Uccello M, Malaguarnera G, Basile F, D'Agata V, Malaguarnera M, Bertino G, et al. Potential role of probiotics on colorectal cancer prevention. BMC Surg. 2012; 12 Suppl 1[DOI][PubMed]
  • 20. Desrouilleres K, Millette M, Vu KD, Touja R, Lacroix M. Cancer preventive effects of a specific probiotic fermented milk containing Lactobacillus acidophilus CL1285, L. casei LBC80R and L. rhamnosus CLR2 on male F344 rats treated with 1, 2-dimethylhydrazine. J Function Foods. 2015; 17: 816-27
  • 21. Yu AQ, Li L. The Potential Role of Probiotics in Cancer Prevention and Treatment. Nutr Cancer. 2016; 68(4): 535-44[DOI][PubMed]
  • 22. Stidl R, Sontag G, Koller V, Knasmuller S. Binding of heterocyclic aromatic amines by lactic acid bacteria: results of a comprehensive screening trial. Mol Nutr Food Res. 2008; 52(3): 322-9[DOI][PubMed]
  • 23. Dominici L, Villarini M, Trotta F, Federici E, Cenci G, Moretti M. Protective effects of probiotic Lactobacillus rhamnosus IMC501 in mice treated with PhIP. J Microbiol Biotechnol. 2014; 24(3): 371-8[PubMed]
  • 24. Batish VK, Roy U, Lal R, Grover S. Antifungal attributes of lactic acid bacteria--a review. Crit Rev Biotechnol. 1997; 17(3): 209-25[DOI][PubMed]
  • 25. Masood MI, Qadir MI, Shirazi JH, Khan IU. Beneficial effects of lactic acid bacteria on human beings. Crit Rev Microbiol. 2011; 37(1): 91-8[DOI][PubMed]
  • 26. Bai JA. Beneficial Microbes in Fermented and Functional Foods. 2014;
  • 27. Carr FJ, Chill D, Maida N. The lactic acid bacteria: a literature survey. Crit Rev Microbiol. 2002; 28(4): 281-370[DOI][PubMed]
  • 28. Shetty PH, Jespersen L. Saccharomyces cerevisiae and lactic acid bacteria as potential mycotoxin decontaminating agents. Trends Food Sci Technol. 2006; 17(2): 48-55
  • 29. Mohammadi R, Mortazavian AM. Review article: technological aspects of prebiotics in probiotic fermented milks. Food Rev Int. 2011; 27(2): 192-212
  • 30. Sadaghdar Y, Mortazavian AM, Ehsani MR. Survival and activity of 5 probiotic lactobacilli strains in 2 types of flavored fermented milk. Food Sci Biotechnol. 2012; 21(1): 151-7
  • 31. Hojati Z, Salehi Z, Motovali-Bashi M, Korbekandi H, Jami S. Molecular Analysis of the Clavulanic Acid Regulatory Gene Isolated from an Iranian Strain of Streptomyces Clavuligerus , PTCC 1709. Cell J. 2011; 13(3): 179-86[PubMed]
  • 32. Roberfroid MB. Prebiotics and probiotics: are they functional foods? Am J Clin Nutr. 2000; 71(6 Suppl): 1682S-7S[PubMed]
  • 33. Kechagia M, Basoulis D, Konstantopoulou S, Dimitriadi D, Gyftopoulou K, Skarmoutsou N, et al. Health benefits of probiotics: a review. ISRN Nutr. 2013; 2013: 481651[DOI][PubMed]
  • 34. Butel MJ. Probiotics, gut microbiota and health. Med Mal Infect. 2014; 44(1): 1-8[DOI][PubMed]
  • 35. Kailasapathy K. Commercial sources of probiotic strains and their validated and potential health benefits-a review. Int J Fermented Foods. 2013; 2(1): 1
  • 36. Abou-Arab AAK, Salim A, Maher RA, El-Hendawy HH, Awad AA. Degradation of polycyclic aromatic hydrocarbons as affected by some lactic acid bacteria. J Am Sci. 2010; 6(10)
  • 37. Rajendran R, Ohta Y. Binding of heterocyclic amines by lactic acid bacteria from miso, a fermented Japanese food. Can J Microbiol. 1998; 44(2): 109-15[PubMed]
  • 38. Terahara M, Meguro S, Kaneko T. Effects of lactic acid bacteria on binding and absorption of mutagenic heterocyclic amines. Biosci Biotechnol Biochem. 1998; 62(2): 197-200[PubMed]
  • 39. Collins PD, Mpofu C, Watson AJ, Rhodes JM. Strategies for detecting colon cancer and/or dysplasia in patients with inflammatory bowel disease. Cochrane Database Syst Rev. 2006; (2)[DOI][PubMed]
  • 40. Rachmilewitz D, Katakura K, Karmeli F, Hayashi T, Reinus C, Rudensky B, et al. Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology. 2004; 126(2): 520-8[PubMed]
  • 41. Bibiloni R, Fedorak RN, Tannock GW, Madsen KL, Gionchetti P, Campieri M, et al. VSL#3 probiotic-mixture induces remission in patients with active ulcerative colitis. Am J Gastroenterol. 2005; 100(7): 1539-46[DOI][PubMed]
  • 42. Sreekumar O, Hosono A. Antimutagenicity and the influence of physical factors in binding Lactobacillus gasseri and Bifidobacterium longum cells to amino acid pyrolysates. J Dairy Sci. 1998; 81(6): 1508-16[DOI][PubMed]
  • 43. Sreekumar O, Hosono A. The heterocyclic amine binding receptors of Lactobacillus gasseri cells. Mutat Res. 1998; 421(1): 65-72[PubMed]
  • 44. Rhee CH, Park HD. Three glycoproteins with antimutagenic activity identified in Lactobacillus plantarum KLAB21. Appl Environ Microbiol. 2001; 67(8): 3445-9[DOI][PubMed]
  • 45. Zhang XB, Ohta Y. Binding of mutagens by fractions of the cell wall skeleton of lactic acid bacteria on mutagens. J Dairy Sci. 1991; 74(5): 1477-81[DOI][PubMed]
  • 46. Matar C, Nadathur SS, Bakalinsky AT, Goulet J. Antimutagenic effects of milk fermented by Lactobacillus helveticus L89 and a protease-deficient derivative. J Dairy Sci. 1997; 80(9): 1965-70[DOI][PubMed]
  • 47. Grajek W, Olejnik A, Sip A. Probiotics, prebiotics and antioxidants as functional foods. Acta Biochim Pol. 2005; 52(3): 665-71[PubMed]
  • 48. Yadav H, Jain S, Sinha PR. Oral administration of dahi containing probiotic Lactobacillus acidophilus and Lactobacillus casei delayed the progression of streptozotocin-induced diabetes in rats. J Dairy Res. 2008; 75(2): 189-95[DOI][PubMed]
  • 49. Wollowski I, Rechkemmer G, Pool-Zobel BL. Protective role of probiotics and prebiotics in colon cancer. Am J Clin Nutr. 2001; 73(2 Suppl): 451S-5S[PubMed]
  • 50. Pool-Zobel B, Veeriah S, Bohmer FD. Modulation of xenobiotic metabolising enzymes by anticarcinogens -- focus on glutathione S-transferases and their role as targets of dietary chemoprevention in colorectal carcinogenesis. Mutat Res. 2005; 591(1-2): 74-92[DOI][PubMed]
  • 51. Busquets R, Bordas M, Toribio F, Puignou L, Galceran MT. Occurrence of heterocyclic amines in several home-cooked meat dishes of the Spanish diet. J Chromatogr B Analyt Technol Biomed Life Sci. 2004; 802(1): 79-86[DOI][PubMed]
  • 52. Jägerstad M, Reuterswärd AL, Olsson R, Grivas S, Nyhammar T, Olsson K, et al. Creatin (in) e and Maillard reaction products as precursors of mutagenic compounds: Effects of various amino acids. Food Chem. 1983; 12(4): 255-64
  • 53. Sugimura T, Wakabayashi K, Nakagama H, Nagao M. Heterocyclic amines: Mutagens/carcinogens produced during cooking of meat and fish. Cancer Sci. 2004; 95(4): 290-9[PubMed]
  • 54. Food, nutrition and the prevention of cancer: a global perspective. 1997;
  • 55. Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins/this publication represents the views and expert opinions of an IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, which met in Lyon. 1992;
  • 56. Cheng KW, Chen F, Wang M. Heterocyclic amines: chemistry and health. Mol Nutr Food Res. 2006; 50(12): 1150-70[DOI][PubMed]
  • 57. Mottier P, Parisod V, Turesky RJ. Quantitative determination of polycyclic aromatic hydrocarbons in barbecued meat sausages by gas chromatography coupled to mass spectrometry. J Agric Food Chem. 2000; 48(4): 1160-6[PubMed]
  • 58. Wenzl T, Simon R, Anklam E, Kleiner J. Analytical methods for polycyclic aromatic hydrocarbons (PAHs) in food and the environment needed for new food legislation in the European Union. TrAC Trends Analytical Chem. 2006; 25(7): 716-25
  • 59. Jira W, Pohlmann M, Hitzel A, Schwägele F. Smoked meat products-innovative strategies for reduction of polycyclic aromatic hydrocarbons by optimisation of the smoking process. Proceedings of International 57th Meat Industry Conference. 2013;
  • 60. Yebra-Pimentel I, Fernandez-Gonzalez R, Martinez-Carballo E, Simal-Gandara J. Optimization of purification processes to remove polycyclic aromatic hydrocarbons (PAHs) in polluted raw fish oils. Sci Total Environ. 2014; 470-471: 917-24[DOI][PubMed]
  • 61. Orrhage K, Sillerstrom E, Gustafsson JA, Nord CE, Rafter J. Binding of mutagenic heterocyclic amines by intestinal and lactic acid bacteria. Mutat Res. 1994; 311(2): 239-48[PubMed]
  • 62. Tsuda H, Hara K, Miyamoto T. Binding of mutagens to exopolysaccharide produced by Lactobacillus plantarum mutant strain 301102S. J Dairy Sci. 2008; 91(8): 2960-6[DOI][PubMed]
  • 63. Nowak A, Katarzyna S, Elzbieta K. Effect of probiotic lactobacilli on faecal enzyme and genotoxic activity in human faecal water in the presence of the carcinogen PhIP in vitro. Int J Dairy Technol. 2012; 65(2): 300-7
  • 64. Faridnia F, Hussin AS, Saari N, Mustafa S, Yee LY, Manap MY. In vitro binding of mutagenic heterocyclic aromatic amines by Bifidobacterium pseudocatenulatum G4. Benef Microbes. 2010; 1(2): 149-54[DOI][PubMed]
  • 65. Bolognani F, Rumney CJ, Rowland IR. Influence of carcinogen binding by lactic acid-producing bacteria on tissue distribution and in vivo mutagenicity of dietary carcinogens. Food Chem Toxicol. 1997; 35(6): 535-45[PubMed]
  • 66. Nowak A, Libudzisz Z. Ability of probiotic Lactobacillus casei DN 114001 to bind or/and metabolise heterocyclic aromatic amines in vitro. Eur J Nutr. 2009; 48(7): 419-27[DOI][PubMed]
  • 67. Nowak A, Arabski M, Libudzisz Z. Ability of intestinal lactic acid bacteria to bind and/or metabolise indole. Food Technol Biotechnol. 2008; 46(3): 299-304
  • 68. Lidbeck A, Overvik E, Rafter J, Nord CE, Gustafsson JA. Effect of Lactobacillus acidophilus supplements on mutagen excretion in faeces and urine in humans. Microb Ecol Health Dis. 1992; 5(1): 59-67
  • 69. Klewicka E, Nowak A, Zdunczyk Z, Juskiewicz J, Cukrowska B. Protective effect of lactofermented red beetroot juice against aberrant crypt foci formation, genotoxicity of fecal water and oxidative stress induced by 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine in rats model. Environ Toxicol Pharmacol. 2012; 34(3): 895-904[DOI][PubMed]
  • 70. Tavan E, Cayuela C, Antoine JM, Trugnan G, Chaugier C, Cassand P. Effects of dairy products on heterocyclic aromatic amine-induced rat colon carcinogenesis. Carcinogenesis. 2002; 23(3): 477-83[PubMed]
  • 71. Duangjitcharoen Y, Kantachote D, Prasitpuripreecha C, Peerajan S, Chaiyasut C. Selection and characterization of probiotic lactic acid bacteria with heterocyclic amine binding and nitrosamine degradation properties. J Appl Pharm Sci. 2014; 4(7): 14
  • 72. Zsivkovits M, Fekadu K, Sontag G, Nabinger U, Huber WW, Kundi M, et al. Prevention of heterocyclic amine-induced DNA damage in colon and liver of rats by different lactobacillus strains. Carcinogenesis. 2003; 24(12): 1913-8[DOI][PubMed]
  • 73. Reddy BS, Rivenson A. Inhibitory effect of Bifidobacterium longum on colon, mammary, and liver carcinogenesis induced by 2-amino-3-methylimidazo[4,5-f]quinoline, a food mutagen. Cancer Res. 1993; 53(17): 3914-8[PubMed]
  • 74. Apas AL, Gonzalez SN, Arena ME. Potential of goat probiotic to bind mutagens. Anaerobe. 2014; 28: 8-12[DOI][PubMed]
  • 75. Swedish National Food Administration . Information about acrylamide in food Uppsala. 2002;
  • 76. Some industrial chemicals. IARC monographs on the evaluation of carcinogenic risks to humans. 1994;
  • 77. Garcia A, Alfaro M. Acrilamida en alimentos para consumo humano. Rev Sanid Milit Mex. 2007; 61(6): 384-8
  • 78. Mestdagh F, Maertens J, Cucu T, Delporte K, Van Peteghem C, De Meulenaer B. Impact of additives to lower the formation of acrylamide in a potato model system through pH reduction and other mechanisms. Food Chem. 2008; 107(1): 26-31
  • 79. Pedreschi F, Kaack K, Granby K. Reduction of acrylamide formation in potato slices during frying. LWT-Food Sci Technol. 2004; 37(6): 679-85
  • 80. Pedreschi F, Kaack K, Granby K. The effect of asparaginase on acrylamide formation in French fries. Food Chem. 2008; 109(2): 386-92[DOI][PubMed]
  • 81. Ciesarova Z, Kiss E, Kolek E. Study of factors affecting acrylamide levels in model systems. Czech J Food Sci. 2006; 24(3): 133
  • 82. Lindsay RC, Jang S. Chemical intervention strategies for substantial suppression of acrylamide formation in fried potato products. Adv Exp Med Biol. 2005; 561: 393-404[DOI][PubMed]
  • 83. Lingnert H, Grivas S, Jägerstad M, Skog K, Törnqvist M, Åman P. Acrylamide in food: mechanism of formation and influencing factors during heating of foods. Scandinavian J Food Nutr. 2002; 46(4): 159-72
  • 84. Rydberg P, Eriksson S, Tareke E, Karlsson P, Ehrenberg L, Tornqvist M. Investigations of factors that influence the acrylamide content of heated foodstuffs. J Agric Food Chem. 2003; 51(24): 7012-8[DOI][PubMed]
  • 85. Banchero M, Pellegrino G, Manna L. Supercritical fluid extraction as a potential mitigation strategy for the reduction of acrylamide level in coffee. J Food Engin. 2013; 115(3): 292-7
  • 86. Friedman M, Levin CE. Review of methods for the reduction of dietary content and toxicity of acrylamide. J Agric Food Chem. 2008; 56(15): 6113-40[DOI][PubMed]
  • 87. Guenther H, Anklam E, Wenzl T, Stadler RH. Acrylamide in coffee: review of progress in analysis, formation and level reduction. Food Addit Contam. 2007; 24 Suppl 1: 60-70[DOI][PubMed]
  • 88. Serrano‐Nino JC, Cavazos‐Garduno A, Gonzalez‐Cordova AF, Vallejo‐Cordoba B, Hernández‐Mendoza A, Garcia HS. In vitro study of the potential protective role of Lactobacillus strains by acrylamide binding. J Food Safety. 2014; 34(1): 62-8
  • 89. Hernandez-Mendoza A, Garcia HS, Steele JL. Screening of Lactobacillus casei strains for their ability to bind aflatoxin B1. Food Chem Toxicol. 2009; 47(6): 1064-8[PubMed]
  • 90. Huang C, Huang CP, Morehart AL. Proton competition in Cu (II) adsorption by fungal mycelia. Water Res. 1991; 25(11): 1365-75
  • 91. Zamora R, Delgado RM, Hidalgo FJ. Model reactions of acrylamide with selected amino compounds. J Agric Food Chem. 2010; 58(3): 1708-13[DOI][PubMed]
  • 92. ARC . Nitroso Compounds IARC. Monographs on the Evaluation of Risks to Humans. 1978;
  • 93. Sen NP, Baddoo PA, Seaman SW. Nitrosamines in cured pork products packaged in elastic rubber nettings: An update. Food Chem. 1993; 47(4): 387-90
  • 94. Habermeyer M, Eisenbrand G, Stadler RH, Lineback DR. N-nitrosamines, including N-nitrosoaminoacids and potential further nonvolatiles. Process-induced food toxicants: Occurrence, formation, mitigation, and health risks. 2009;
  • 95. Hosono A, Wardojo R, Otani H. Inhibitory effects of lactic acid bacteria from fermented milk on the mutagenicities of volatile nitrosamines. Agric Biol Chem. 1990; 54(7): 1639-43
  • 96. Grill JP, Crociani J, Ballongue J. Effect of bifidobacteria on nitrites and nitrosamines. Lett Appl Microbiol. 1995; 20(5): 328-30[PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments