International Journal of Cancer Management

Published by: Kowsar

Interpretation of Tongue Squamous Cell Carcinoma via Protein-Protein Interaction Network Construction and Analysis

Mona Zamanian Azodi 1 , Mostafa Rezaei-Tavirani 2 , * , Majid Rezaei-Tavirani 3 , Vahid Mansouri 2 and Reza Vafaee 1
Authors Information
1 Hearing Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2 Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3 Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
Article information
  • International Journal of Cancer Management: January 2018, 11 (1); e62004
  • Published Online: January 20, 2018
  • Article Type: Research Article
  • Received: September 20, 2017
  • Revised: October 29, 2017
  • Accepted: January 13, 2018
  • DOI: 10.5812/ijcm.62004

To Cite: Zamanian Azodi M, Rezaei-Tavirani M, Rezaei-Tavirani M, Mansouri V, Vafaee R. Interpretation of Tongue Squamous Cell Carcinoma via Protein-Protein Interaction Network Construction and Analysis, Int J Cancer Manag. 2018 ; 11(1):e62004. doi: 10.5812/ijcm.62004.

Abstract
Copyright © 2018, Cancer Research Center (CRC), Shahid Beheshti University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Methods
3. Results
4. Discussion
Acknowledgements
Footnotes
References
  • 1. Jones AS, Rafferty M, Fenton JE, Jones TM, Husband DJ. Treatment of squamous cell carcinoma of the tongue base: irradiation, surgery, or palliation?. Ann Otol Rhinol Laryngol. 2007;116(2):92-9. doi: 10.1177/000348940711600203. [PubMed: 17388231].
  • 2. He QY, Chen J, Kung HF, Yuen AP, Chiu JF. Identification of tumor-associated proteins in oral tongue squamous cell carcinoma by proteomics. Proteomics. 2004;4(1):271-8. doi: 10.1002/pmic.200300550. [PubMed: 14730689].
  • 3. Azimi H, Khajehahmadi S, Rahpeyma A. Tongue squamous cell carcinoma, a clinical study. Iran J Pathol. 2014;9(1):28-32.
  • 4. Ye H, Yu T, Temam S, Ziober BL, Wang J, Schwartz JL, et al. Transcriptomic dissection of tongue squamous cell carcinoma. BMC Genomics. 2008;9:69. doi: 10.1186/1471-2164-9-69. [PubMed: 18254958].
  • 5. Wong TS, Liu XB, Chung Wai Ho A, Po Wing Yuen A, Wai Man Ng R, Ignace Wei W. Identification of pyruvate kinase type M2 as potential oncoprotein in squamous cell carcinoma of tongue through microRNA profiling. Int J Cancer. 2008;123(2):251-7. doi: 10.1002/ijc.23583. [PubMed: 18464261].
  • 6. Asadzadeh Aghdaee H, Mansouri V, Peyvandi AA, Moztarzadeh F, Okhovatian F, Lahmi F, et al. Topological and functional analysis of nonalcoholic steatohepatitis through protein interaction mapping. Gastroenterol Hepatol Bed Bench. 2016;9(1):23-8. [PubMed: 28224024].
  • 7. Zamanian Azodi M, Rezaei Tavirani M, Arefi Oskouie A, Hamdieh M, Derakhshan MK, Ahmadzadeh A, et al. Fluoxetine regulates ig kappa chain c region expression levels in the serum of obsessive compulsive disorder patients, a proteomic approach. Iran J Pharm Res. 2017;16(3):1264-71. [PubMed: 29201116].
  • 8. Zamanian Azodi M, Rezaei Tavirani M, Nejadi N, Arefi Oskouie A, Zayeri F, Hamdieh M, et al. Serum proteomic profiling of obsessive compulsive disorder, washing subtype, a preliminary study. Basic Clin Neurosci. 2017;8(4):307-16. doi: 10.18869/nirp.bcn.8.4.307. [PubMed: 29158881].
  • 9. Safari-Alighiarloo N, Taghizadeh M, Rezaei-Tavirani M, Goliaei B, Peyvandi AA. Protein-protein interaction networks (PPI) and complex diseases. Gastroenterol Hepatol Bed Bench. 2014;7(1):17-31. [PubMed: 25436094].
  • 10. Abbaszadeh HA, Peyvandi AA, Sadeghi Y, Safaei A, Zamanian Azodi M, Khoramgah MS, et al. Er, YAG laser and cyclosporin a effect on cell cycle regulation of human gingival fibroblast cells. J Lasers Med Sci. 2017;8(3):143-9. doi: 10.15171/jlms.2017.26. [PubMed: 29123635].
  • 11. Safaei A, Rezaei Tavirani M, Arefi Oskouei A, Zamanian Azodi M, Mohebbi SR, Nikzamir AR. Protein-protein interaction network analysis of cirrhosis liver disease. Gastroenterol Hepatol Bed Bench. 2016;9(2):114-23. [PubMed: 27099671].
  • 12. Zali H, Rezaei Tavirani M. Meningioma protein-protein interaction network. Arch Iran Med. 2014;17(4):262-72. [PubMed: 24724603].
  • 13. Safari Alighiarloo N, Taghizadeh M, Tabatabaei SM, Shahsavari S, Namaki S, Khodakarim S, et al. Identification of new key genes for type 1 diabetes through construction and analysis of protein protein interaction networks based on blood and pancreatic islet transcriptomes. J Diabetes. 2017;9(8):764-77. doi: 10.1111/1753-0407.12483. [PubMed: 27625010].
  • 14. Okamoto K, Chen W, Li XY. Ranking of closeness centrality for large scale social networks. Lecture Notes in Computer Science. 5059. America: Springer; 2008. p. 186-95.
  • 15. Ozgur A, Vu T, Erkan G, Radev DR. Identifying gene disease associations using centrality on a literature mined gene-interaction network. Bioinformatics. 2008;24(13):277-85. doi: 10.1093/bioinformatics/btn182. [PubMed: 18586725].
  • 16. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The STRING database in 2017, quality controlled protein protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45(D1):362-8. doi: 10.1093/nar/gkw937. [PubMed: 27924014].
  • 17. Assenov Y, Ramirez F, Schelhorn SE, Lengauer T, Albrecht M. Computing topological parameters of biological networks. Bioinformatics. 2008;24(2):282-4. doi: 10.1093/bioinformatics/btm554. [PubMed: 18006545].
  • 18. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091-3. doi: 10.1093/bioinformatics/btp101. [PubMed: 19237447].
  • 19. Bindea G, Galon J, Mlecnik B. CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics. 2013;29(5):661-3. doi: 10.1093/bioinformatics/btt019. [PubMed: 23325622].
  • 20. Safari Alighiarloo N, Rezaei Tavirani M, Taghizadeh M, Tabatabaei SM, Namaki S. Network based analysis of differentially expressed genes in cerebrospinal fluid, (CSF) and blood reveals new candidate genes for multiple sclerosis. PeerJ. 2016;4:2775. doi: 10.7717/peerj.2775. [PubMed: 28028462].
  • 21. Albert R. Scale free networks in cell biology. J Cell Sci. 2005;118(21):4947-57. doi: 10.1242/jcs.02714. [PubMed: 16254242].
  • 22. Zamanian-Azodi M, Rezaei-Tavirani M, Rahmati-Rad S, Hasanzadeh H, Rezaei Tavirani M, Seyyedi SS. Protein-Protein Interaction Network could reveal the relationship between the breast and colon cancer. Gastroenterol Hepatol Bed Bench. 2015;8(3):215-24. [PubMed: 26328044].
  • 23. Leedy DA, Trune DR, Kronz JD, Weidner N, Cohen JI. Tumor angiogenesis, the p53 antigen, and cervical metastasis in squamous carcinoma of the tongue. Otolaryngol Head Neck Surg. 1994;111(4):417-22. doi: 10.1177/019459989411100405. [PubMed: 7524005].
  • 24. Massarelli E, Liu DD, Lee JJ, El-Naggar AK, Lo Muzio L, Staibano S, et al. Akt activation correlates with adverse outcome in tongue cancer. Cancer. 2005;104(11):2430-6. doi: 10.1002/cncr.21476. [PubMed: 16245318].
  • 25. Ryott M, Wangsa D, Heselmeyer-Haddad K, Lindholm J, Elmberger G, Auer G, et al. EGFR protein overexpression and gene copy number increases in oral tongue squamous cell carcinoma. Eur J Cancer. 2009;45(9):1700-8. doi: 10.1016/j.ejca.2009.02.027. [PubMed: 19332367].
  • 26. Katoh K, Nakanishi Y, Akimoto S, Yoshimura K, Takagi M, Sakamoto M, et al. Correlation between laminin-5 gamma2 chain expression and epidermal growth factor receptor expression and its clinicopathological significance in squamous cell carcinoma of the tongue. Oncology. 2002;62(4):318-26. doi: 10.1159/000065063. [PubMed: 12138239].
  • 27. Diniz-Freitas M, Garcia-Caballero T, Antunez-Lopez J, Gandara-Rey JM, Garcia-Garcia A. Reduced E-cadherin expression is an indicator of unfavourable prognosis in oral squamous cell carcinoma. Oral Oncol. 2006;42(2):190-200. doi: 10.1016/j.oraloncology.2005.07.010. [PubMed: 16249116].
  • 28. Li S, Jiao J, Lu Z, Zhang M. An essential role for N-cadherin and beta-catenin for progression in tongue squamous cell carcinoma and their effect on invasion and metastasis of Tca8113 tongue cancer cells. Oncol Rep. 2009;21(5):1223-33. [PubMed: 19360298].
  • 29. Xie X, Clausen OP, De Angelis P, Boysen M. The prognostic value of spontaneous apoptosis, Bax, Bcl-2, and p53 in oral squamous cell carcinoma of the tongue. Cancer. 1999;86(6):913-20. [PubMed: 10491515].
  • 30. Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P, Olivier M. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene. 2007;26(15):2157-65. doi: 10.1038/sj.onc.1210302. [PubMed: 17401424].
  • 31. Ji M, Wang W, Yan W, Chen D, Ding X, Wang A. Dysregulation of AKT1, a miR 138 target gene, is involved in the migration and invasion of tongue squamous cell carcinoma. J Oral Pathol Med. 2017;46(9):731-7. doi: 10.1111/jop.12551. [PubMed: 28122142].
  • 32. Jia LF, Huang YP, Zheng YF, Lyu MY, Wei SB, Meng Z, et al. miR-29b suppresses proliferation, migration, and invasion of tongue squamous cell carcinoma through PTEN-AKT signaling pathway by targeting Sp1. Oral Oncol. 2014;50(11):1062-71. doi: 10.1016/j.oraloncology.2014.07.010. [PubMed: 25127200].
  • 33. Leek RD, Hunt NC, Landers RJ, Lewis CE, Royds JA, Harris AL. Macrophage infiltration is associated with VEGF and EGFR expression in breast cancer. J Pathol. 2000;190(4):430-6. doi: 10.1002/(SICI)1096-9896(200003)190:4<430::AID-PATH538>3.0.CO;2-6. [PubMed: 10699991].
  • 34. Lee JA, Ko Y, Kim DH, Lim JS, Kong CB, Cho WH, et al. Epidermal growth factor receptor: is it a feasible target for the treatment of osteosarcoma?. Cancer Res Treat. 2012;44(3):202-9. doi: 10.4143/crt.2012.44.3.202. [PubMed: 23091447].
  • 35. Lieto E, Ferraraccio F, Orditura M, Castellano P, Mura AL, Pinto M, et al. Expression of vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) is an independent prognostic indicator of worse outcome in gastric cancer patients. Ann Surg Oncol. 2008;15(1):69-79. doi: 10.1245/s10434-007-9596-0. [PubMed: 17896140].
  • 36. Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype?. Nat Rev Cancer. 2007;7(6):415-28. doi: 10.1038/nrc2131. [PubMed: 17508028].
  • 37. Sato F, Meltzer SJ. CpG island hypermethylation in progression of esophageal and gastric cancer. Cancer. 2006;106(3):483-93. doi: 10.1002/cncr.21657. [PubMed: 16362978].
  • 38. De Schutter H, Geeraerts H, Verbeken E, Nuyts S. Promoter methylation of TIMP3 and CDH1 predicts better outcome in head and neck squamous cell carcinoma treated by radiotherapy only. Oncol Rep. 2009;21(2):507-13. [PubMed: 19148529].
  • 39. Palacios J, Gamallo C. Mutations in the beta-catenin gene (CTNNB1) in endometrioid ovarian carcinomas. Cancer Res. 1998;58(7):1344-7. [PubMed: 9537226].
  • 40. Xia H, Ng SS, Jiang S, Cheung WK, Sze J, Bian XW, et al. miR-200a-mediated downregulation of ZEB2 and CTNNB1 differentially inhibits nasopharyngeal carcinoma cell growth, migration and invasion. Biochem Biophys Res Commun. 2010;391(1):535-41. doi: 10.1016/j.bbrc.2009.11.093. [PubMed: 19931509].
  • 41. Gerstein AV, Almeida TA, Zhao G, Chess E, Shih Ie M, Buhler K, et al. APC/CTNNB1 (beta-catenin) pathway alterations in human prostate cancers. Genes Chromosomes Cancer. 2002;34(1):9-16. [PubMed: 11921277].
  • 42. de Boer CJ, Kluin-Nelemans JC, Dreef E, Kester MG, Kluin PM, Schuuring E, et al. Involvement of the CCND1 gene in hairy cell leukemia. Ann Oncol. 1996;7(3):251-6. [PubMed: 8740788].
  • 43. Callender T, el-Naggar AK, Lee MS, Frankenthaler R, Luna MA, Batsakis JG. PRAD-1 (CCND1)/cyclin D1 oncogene amplification in primary head and neck squamous cell carcinoma. Cancer. 1994;74(1):152-8. [PubMed: 8004570].
  • 44. Betticher DC, Heighway J, Hasleton PS, Altermatt HJ, Ryder WD, Cerny T, et al. Prognostic significance of CCND1 (cyclin D1) overexpression in primary resected non-small-cell lung cancer. Br J Cancer. 1996;73(3):294-300. [PubMed: 8562333].
  • 45. Mineta H, Miura K, Takebayashi S, Ueda Y, Misawa K, Harada H, et al. Cyclin D1 overexpression correlates with poor prognosis in patients with tongue squamous cell carcinoma. Oral Oncol. 2000;36(2):194-8. [PubMed: 10745172].
  • 46. Bertheau P, Plassa F, Espie M, Turpin E, de Roquancourt A, Marty M, et al. Effect of mutated TP53 on response of advanced breast cancers to high-dose chemotherapy. Lancet. 2002;360(9336):852-4. doi: 10.1016/S0140-6736(02)09969-5. [PubMed: 12243922].
  • 47. Pfaff E, Remke M, Sturm D, Benner A, Witt H, Milde T, et al. TP53 mutation is frequently associated with CTNNB1 mutation or MYCN amplification and is compatible with long-term survival in medulloblastoma. J Clin Oncol. 2010;28(35):5188-96. doi: 10.1200/JCO.2010.31.1670. [PubMed: 21060032].
  • 48. Rivera C, Venegas B. Histological and molecular aspects of oral squamous cell carcinoma (Review). Oncol Lett. 2014;8(1):7-11. doi: 10.3892/ol.2014.2103. [PubMed: 24959211].
  • 49. Cohen RF, Contrino J, Spiro JD, Mann EA, Chen LL, Kreutzer DL. Interleukin-8 expression by head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 1995;121(2):202-9. [PubMed: 7840929].
  • 50. Avadhani AV, Parachuru VP, Milne T, Seymour GJ, Rich AM. Multiple cells express interleukin 17 in oral squamous cell carcinoma. J Oral Pathol Med. 2017;46(1):39-45. doi: 10.1111/jop.12465. [PubMed: 27294336].
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments