International Journal of Cancer Management

Published by: Kowsar

Evaluation of Anti-Melanogenic and Cytotoxic Activities of Phlomis caucasica on Human Melanoma SKMEL-3 Cells

Parisa Sarkhail 1 , * , Mona Salimi 2 , Pantea Sarkheil 1 , Fatemeh Heidarnezhad 3 and Soodabeh Saeidnia 4
Authors Information
1 Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, IR Iran
2 Pharmacology and Physiology Department, Pasteur Institute of Iran, Tehran, IR Iran
3 National Cell Bank of Pasteur Institute of Iran, Tehran, IR Iran
4 Medicinal Plants Research Center, Tehran University of Medical Sciences, Tehran, IR Iran
Article information
  • International Journal of Cancer Management: March 2017, 10 (3); e4633
  • Published Online: March 20, 2017
  • Article Type: Research Article
  • Received: November 7, 2015
  • Revised: May 30, 2016
  • Accepted: March 7, 2017
  • DOI: 10.5812/ijcm.4633

To Cite: Sarkhail P, Salimi M, Sarkheil P, Heidarnezhad F, Saeidnia S. Evaluation of Anti-Melanogenic and Cytotoxic Activities of Phlomis caucasica on Human Melanoma SKMEL-3 Cells, Int J Cancer Manag. 2017 ; 10(3):e4633. doi: 10.5812/ijcm.4633.

Abstract
Copyright © 2017, International Journal of Cancer Management. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussions
Acknowledgements
Footnotes
References
  • 1. Tsao YT, Huang YF, Kuo CY, Lin YC, Chiang WC, Wang WK, et al. Hinokitiol Inhibits Melanogenesis via AKT/mTOR Signaling in B16F10 Mouse Melanoma Cells. Int J Mol Sci. 2016; 17(2): 248[DOI][PubMed]
  • 2. Slominski A, Zbytek B, Slominski R. Inhibitors of melanogenesis increase toxicity of cyclophosphamide and lymphocytes against melanoma cells. Int J Cancer. 2009; 124(6): 1470-7[DOI][PubMed]
  • 3. Slominski A, Kim TK, Brozyna AA, Janjetovic Z, Brooks DL, Schwab LP, et al. The role of melanogenesis in regulation of melanoma behavior: melanogenesis leads to stimulation of HIF-1alpha expression and HIF-dependent attendant pathways. Arch Biochem Biophys. 2014; 563: 79-93[DOI][PubMed]
  • 4. Chan YY, Kim KH, Cheah SH. Inhibitory effects of Sargassum polycystum on tyrosinase activity and melanin formation in B16F10 murine melanoma cells. J Ethnopharmacol. 2011; 137(3): 1183-8[DOI][PubMed]
  • 5. Qiao Z, Koizumi Y, Zhang M, Natsui M, Flores MJ, Gao L, et al. Anti-melanogenesis effect of Glechoma hederacea L. extract on B16 murine melanoma cells. Biosci Biotechnol Biochem. 2012; 76(10): 1877-83[DOI][PubMed]
  • 6. Limem-Ben Amor I, Boubaker J, Ben Sgaier M, Skandrani I, Bhouri W, Neffati A, et al. Phytochemistry and biological activities of Phlomis species. J Ethnopharmacol. 2009; 125(2): 183-202[DOI][PubMed]
  • 7. Sarkhail P, Nikan M, Sarkheil P, Gohari AR, Ajani Y, Hosseini R, et al. Quantification of verbascoside in medicinal species of Phlomis and their genetic relationships. Daru. 2014; 22(1): 32[DOI][PubMed]
  • 8. Soltani-Nasab F, Asgarpanah J, Majdzadeh M, Ostad SN. Investigating the effect of Phlomis lanceolata Boiss and hohen on cancer cell lines. Acta Med Iran. 2014; 52(5): 333-6[PubMed]
  • 9. Turker AU, Yıldırım AB. Evaluation of Antibacterial and Antitumor Activities of Some Turkish Endemic Plants. Trop J Pharm Res. 2014; 12(6): 1003[DOI]
  • 10. Salimi M, Sarkhail P, Tahmasvand R, Baeeri M. Determination of anti-melanogenic activity of Phlomis kurdica in human melanoma SKMEL-3 cells. Iran J Pharm Sci. 2016; 12(1): 1-10
  • 11. Delazar A, Sabzevari A, Mojarrab M, Nazemiyeh H, Esnaashari S, Nahar L, et al. Free-radical-scavenging principles from Phlomis caucasica. J Nat Med. 2008; 62(4): 464-6[DOI][PubMed]
  • 12. Yamauchi K, Mitsunaga T, Batubara I. Isolation, Identification and Tyrosinase Inhibitory Activities of the Extractives from Allamanda cathartica. Nat Resources. 2011; 2(3): 167-72[DOI]
  • 13. Lan WJ, Wang HY, Lan W, Wang KY. Geniposide enhances melanogenesis by stem cell factor/c-Kit signalling in norepinephrine-exposed normal human epidermal melanocyte. Basic Clin Pharmacol Toxicol. 2008; 103(1): 88-93[DOI][PubMed]
  • 14. Akihisa T, Seino K, Kaneko E, Watanabe K, Tochizawa S, Fukatsu M, et al. Melanogenesis inhibitory activities of iridoid-, hemiterpene-, and fatty acid-glycosides from the fruits of Morinda citrifolia (Noni). J Oleo Sci. 2010; 59(1): 49-57[PubMed]
  • 15. Al-Duais M, Müller L, Böhm V, Jetschke G. Antioxidant capacity and total phenolics of Cyphostemma digitatum before and after processing: use of different assays. Eur Food Res Technol. 2009; 228(5): 813-21[DOI]
  • 16. Sarkhail P, Sarkheil P, Khalighi-Sigaroodi F, Shafiee A, Ostad N. Tyrosinase inhibitor and radical scavenger fractions and isolated compounds from aerial parts of Peucedanum knappii Bornm. Nat Prod Res. 2013; 27(10): 896-9[DOI][PubMed]
  • 17. Fukumoto LR, Mazza G. Assessing antioxidant and prooxidant activities of phenolic compounds. J Agric Food Chem. 2000; 48(8): 3597-604[PubMed]
  • 18. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983; 65(1-2): 55-63[PubMed]
  • 19. Sapkota K, Park SE, Kim JE, Kim S, Choi HS, Chun HS, et al. Antioxidant and antimelanogenic properties of chestnut flower extract. Biosci Biotechnol Biochem. 2010; 74(8): 1527-33[DOI][PubMed]
  • 20. Nakayama J, Guan XC, Nakashima M, Mashino T, Hori Y. In vitro comparison between mouse B16 and human melanoma cell lines of the expression of ICAM-1 induced by cytokines and/or hyperthermia. J Dermatol. 1997; 24(6): 351-60[PubMed]
  • 21. Ohguchi K, Akao Y, Nozawa Y. Stimulation of melanogenesis by the citrus flavonoid naringenin in mouse B16 melanoma cells. Biosci Biotechnol Biochem. 2006; 70(6): 1499-501[DOI][PubMed]
  • 22. Huang YC, Yang CH, Chiou YL. Citrus flavanone naringenin enhances melanogenesis through the activation of Wnt/beta-catenin signalling in mouse melanoma cells. Phytomedicine. 2011; 18(14): 1244-9[DOI][PubMed]
  • 23. Delaporte RH, Sanchez GM, Cuellar AC, Giuliani A, Palazzo de Mello JC. Anti-inflammatory activity and lipid peroxidation inhibition of iridoid lamiide isolated from Bouchea fluminensis (Vell.) Mold. (Verbenaceae). J Ethnopharmacol. 2002; 82(2-3): 127-30[PubMed]
  • 24. Xie W, Zhu J, Wan ZM, Zhao YW. Anti-tumor Effect of Phlomiol and Its Mechanism Study. China Pharm. 2010; 39: 7
  • 25. Jiang WL, Fu FH, Zheng SG, Zhang DL, Zhu HB, Jian H. 8-O-acetyl shanzhiside methylester attenuates apoptosis and ameliorates mitochondrial energy metabolism in rat cortical neurons exposed to oxygen-glucose deprivation. Eur J Pharmacol. 2010; 629(1-3): 20-4[DOI][PubMed]
  • 26. Kasai R, Katagiri M, Ohtani K, Yamasaki K, Chong-Ren Y, Tanaka O. Iridoid glycosides from Phlomis younghusbandii roots. Phytochemistry. 1994; 36(4): 967-70[DOI]
  • 27. Li M, Zhang C, Wei L, Fan P, Zhang Q, Jia Z. [Determination of five iridoid glycosides in Phlomis younghusbandii by HPLC]. Zhongguo Zhong Yao Za Zhi. 2011; 36(5): 594-7[PubMed]
  • 28. Takeda Y, Matsumura H, Masuda T, Honda G, Otsuka H, Takaishi Y, et al. Phlorigidosides A-C, iridoid glucosides from Phlomis rigida. Phytochemistry. 2000; 53(8): 931-5[PubMed]
  • 29. Nawa Y, Endo J, Ohta T. The inhibitory effect of the components of Cornus officinalis on melanogenesis. J Cosmet Sci. 2007; 58(5): 505-17[PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments