International Journal of Cancer Management

Published by: Kowsar

Substrate-Dependent Activity of ERK and MEK Proteins in Breast Cancer (MCF7), and Kidney Embryonic (Hek-293) Cell Lines, Cultured on Different Substrates

Aliakbar Taherian 1 , * , Thomas A. Haas 2 and Abdoulhossein Davoodabadi 3
Authors Information
1 Kashan Gametogenesis Research Centre, Kashan University of Medical Sciences, Kashan, IR Iran
2 Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
3 Department of Surgery, Kashan University of Medical Sciences, Kashan, IR Iran
Article information
  • Iranian Journal of Cancer Prevention: October 28, 2015, 8 (5); e3909
  • Published Online: October 27, 2015
  • Article Type: Research Article
  • Received: August 25, 2015
  • Accepted: October 4, 2015
  • DOI: 10.17795/ijcp-3909

To Cite: Taherian A, Haas T A, Davoodabadi A. Substrate-Dependent Activity of ERK and MEK Proteins in Breast Cancer (MCF7), and Kidney Embryonic (Hek-293) Cell Lines, Cultured on Different Substrates, Int J Cancer Manag. 2015 ; 8(5):e3909. doi: 10.17795/ijcp-3909.

Abstract
Copyright © 2015, Iranian Journal of Cancer Prevention.This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Falandry C, Canney PA, Freyer G, Dirix LY. Role of combination therapy with aromatase and cyclooxygenase-2 inhibitors in patients with metastatic breast cancer. Ann Oncol. 2009; 20(4): 615-20[DOI][PubMed]
  • 2. Baselga J, Mendelsohn J. The epidermal growth factor receptor as a target for therapy in breast carcinoma. Breast Cancer Res Treat. 1994; 29(1): 127-38[DOI]
  • 3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015; 65(1): 5-29[DOI][PubMed]
  • 4. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014; 64(1): 9-29[DOI][PubMed]
  • 5. Viale G. The current state of breast cancer classification. Ann Oncol. 2012; 23 Suppl 10-10[DOI][PubMed]
  • 6. Pierre FH, Santarelli RL, Allam O, Tache S, Naud N, Gueraud F, et al. Freeze-dried ham promotes azoxymethane-induced mucin-depleted foci and aberrant crypt foci in rat colon. Nutr Cancer. 2010; 62(5): 567-73[DOI][PubMed]
  • 7. van Dijk M, Goransson SA, Stromblad S. Cell to extracellular matrix interactions and their reciprocal nature in cancer. Exp Cell Res. 2013; 319(11): 1663-70[DOI][PubMed]
  • 8. Yakovlev S, Zhang L, Ugarova T, Medved L. Interaction of fibrin(ogen) with leukocyte receptor alpha M beta 2 (Mac-1): further characterization and identification of a novel binding region within the central domain of the fibrinogen gamma-module. Biochemistry. 2005; 44(2): 617-26[DOI][PubMed]
  • 9. Flick MJ, Du X, Degen JL. Fibrin (ogen)-αMβ2 interactions regulate leukocyte function and innate immunity in vivo. Exp Biol Med. 2004; 229(11): 1105-10
  • 10. Kadler KE, Hill A, Canty-Laird EG. Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr Opin Cell Biol. 2008; 20(5): 495-501[DOI][PubMed]
  • 11. Magnusson MK, Mosher DF. Fibronectin : Structure, Assembly, and Cardiovascular Implications. Arterioscler Thromb Vasc Biol. 1998; 18(9): 1363-70[DOI]
  • 12. Pereira M, Rybarczyk BJ, Odrljin TM, Hocking DC, Sottile J, Simpson-Haidaris PJ. The incorporation of fibrinogen into extracellular matrix is dependent on active assembly of a fibronectin matrix. J Cell Sci. 2002; 115: 609-17[PubMed]
  • 13. Boulton TG, Nye SH, Robbins DJ, Ip NY, Radzlejewska E, Morgenbesser SD, et al. ERKs: A family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell. 1991; 65(4): 663-75[DOI]
  • 14. Yao Y, Li W, Wu J, Germann UA, Su MS, Kuida K, et al. Extracellular signal-regulated kinase 2 is necessary for mesoderm differentiation. Proc Natl Acad Sci U S A. 2003; 100(22): 12759-64[DOI][PubMed]
  • 15. Saba-El-Leil MK, Vella FD, Vernay B, Voisin L, Chen L, Labrecque N, et al. An essential function of the mitogen-activated protein kinase Erk2 in mouse trophoblast development. EMBO Rep. 2003; 4(10): 964-8[DOI][PubMed]
  • 16. Hatano N, Mori Y, Oh-hora M, Kosugi A, Fujikawa T, Nakai N, et al. Essential role for ERK2 mitogen-activated protein kinase in placental development. Genes Cells. 2003; 8(11): 847-56[DOI]
  • 17. Nekrasova T, Shive C, Gao Y, Kawamura K, Guardia R, Landreth G, et al. ERK1-Deficient Mice Show Normal T Cell Effector Function and Are Highly Susceptible to Experimental Autoimmune Encephalomyelitis. J Immunol. 2005; 175(4): 2374-80[DOI]
  • 18. Pagès G, Guérin S, Grall D, Bonino F, Smith A, Anjuere F, et al. Defective Thymocyte Maturation in p44 MAP Kinase (Erk 1) Knockout Mice. Science. 1999; 286(5443): 1374-7[DOI]
  • 19. Bost F, Aouadi M, Caron L, Even P, Belmonte N, Prot M, et al. The Extracellular Signal-Regulated Kinase Isoform ERK1 Is Specifically Required for In Vitro and In Vivo Adipogenesis. Diabetes. 2005; 54(2): 402-11[DOI]
  • 20. Mazzucchelli C, Vantaggiato C, Ciamei A, Fasano S, Pakhotin P, Krezel W, et al. Knockout of ERK1 MAP Kinase Enhances Synaptic Plasticity in the Striatum and Facilitates Striatal-Mediated Learning and Memory. Neuron. 2002; 34(5): 807-20[DOI]
  • 21. Vantaggiato C, Formentini I, Bondanza A, Bonini C, Naldini L, Brambilla R. ERK1 and ERK2 mitogen-activated protein kinases affect Ras-dependent cell signaling differentially. J Biol. 2006; 5(5): 14[DOI][PubMed]
  • 22. Pawson T, Nash P. Protein-protein interactions define specificity in signal transduction. Genes Dev. 2000; 14(9): 1027-47[PubMed]
  • 23. Pawson T. Protein modules and signalling networks. Nature. 1995; 373(6515): 573-80[DOI][PubMed]
  • 24. Pawson T. Signaling Through Scaffold, Anchoring, and Adaptor Proteins. Science. 1997; 278(5346): 2075-80[DOI]
  • 25. Hunter T. Protein kinases and phosphatases: The Yin and Yang of protein phosphorylation and signaling. Cell. 1995; 80(2): 225-36[DOI]
  • 26. Kleinman HK, Philp D, Hoffman MP. Role of the extracellular matrix in morphogenesis. Curr Opin Biotechnol. 2003; 14(5): 526-32[DOI]
  • 27. Hoshino R, Chatani Y, Yamori T, Tsuruo T, Oka H, Yoshida O, et al. Constitutive activation of the 41-/43-kDa mitogen-activated protein kinase signaling pathway in human tumors. Oncogene. 1999; 18(3): 813-22[DOI][PubMed]
  • 28. Kuschel C, Steuer H, Maurer A, Kanzok B, Stoop R, Angres B. Cell adhesion profiling using extracellular matrix protein microarrays. BioTech. 2006; 40(4): 523-31[DOI]
  • 29. Taherian A, Li X, Liu Y, Haas TA. Differences in integrin expression and signaling within human breast cancer cells. BMC Cancer. 2011; 11: 293[DOI][PubMed]
  • 30. Xu H, Bihan D, Chang F, Huang PH, Farndale RW, Leitinger B. Discoidin domain receptors promote alpha1beta1- and alpha2beta1-integrin mediated cell adhesion to collagen by enhancing integrin activation. PLoS One. 2012; 7(12)[DOI][PubMed]
  • 31. Barczyk M, Carracedo S, Gullberg D. Integrins. Cell Tissue Res. 2010; 339(1): 269-80[DOI][PubMed]
  • 32. Leitinger B. Transmembrane collagen receptors. Annu Rev Cell Dev Biol. 2011; 27: 265-90[DOI][PubMed]
  • 33. Popova SN, Lundgren-Akerlund E, Wiig H, Gullberg D. Physiology and pathology of collagen receptors. Acta Physiol (Oxf). 2007; 190(3): 179-87[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments