International Journal of Cancer Management

Published by: Kowsar

Enhancement Evaluation of Energy Deposition and Secondary Particle Production in Gold Nanoparticle Aided Tumor Using Proton Therapy

Somaye Malmir 1 , * , Ali Asghar Mowlavi 2 and Saeed Mohammadi 1
Authors Information
1 Department of Physics, Payame Noor University, Tehran, Iran
2 Hakim Sabzevari University, Department of Physics, School of Sciences, Sabzevar, Iran
Article information
  • International Journal of Cancer Management: October 2017, 10 (10); e10719
  • Published Online: October 28, 2017
  • Article Type: Research Article
  • Received: January 27, 2017
  • Revised: April 1, 2017
  • Accepted: July 4, 2017
  • DOI: 10.5812/ijcm.10719

How to Cite: Malmir S, Asghar Mowlavi A, Mohammadi S. Enhancement Evaluation of Energy Deposition and Secondary Particle Production in Gold Nanoparticle Aided Tumor Using Proton Therapy, Int J Cancer Manag. 2017 ; 10(10):e10719. doi: 10.5812/ijcm.10719.

Copyright © 2017, Cancer Research Center (CRC), Shahid Beheshti University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Methods
3. Results
4. Discussion
  • 1. Wilson RR. Radiological use of fast protons. Radiology. 1946;47(5):487-91. doi: 10.1148/47.5.487. [PubMed: 20274616].
  • 2. Schardt D, Elsasser T, Schulz Ertner D. Heavy ion tumor therapy, Physical and radiobiological benefits. Rev Mod Phys. 2010;82(1):383-425. doi: 10.1103/RevModPhys.82.383.
  • 3. Loeffler JS, Durante M. Charged particle therapy--optimization, challenges and future directions. Nat Rev Clin Oncol. 2013;10(7):411-24. doi: 10.1038/nrclinonc.2013.79. [PubMed: 23689752].
  • 4. Phan J, Sio TT, Nguyen TP, Takiar V, Gunn GB, Garden AS, et al. Reirradiation of Head and Neck Cancers With Proton Therapy: Outcomes and Analyses. Int J Radiat Oncol Biol Phys. 2016;96(1):30-41. doi: 10.1016/j.ijrobp.2016.03.053. [PubMed: 27325480].
  • 5. Martinez-Rovira I, Prezado Y. Evaluation of the local dose enhancement in the combination of proton therapy and nanoparticles. Med Phys. 2015;42(11):6703-10. doi: 10.1118/1.4934370. [PubMed: 26520760].
  • 6. Hainfeld JF, Dilmanian FA, Slatkin DN, Smilowitz HM. Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol. 2008;60(8):977-85. doi: 10.1211/jpp.60.8.0005. [PubMed: 18644191].
  • 7. Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol. 2004;49(18):309-15. [PubMed: 15509078].
  • 8. Walzlein C, Scifoni E, Kramer M, Durante M. Simulations of dose enhancement for heavy atom nanoparticles irradiated by protons. Phys Med Biol. 2014;59(6):1441-58. doi: 10.1088/0031-9155/59/6/1441. [PubMed: 24584098].
  • 9. Bobyk L, Edouard M, Deman P, Vautrin M, Pernet Gallay K, Delaroche J, et al. Photoactivation of gold nanoparticles for glioma treatment. Nanomedicine. 2013;9(7):1089-97. doi: 10.1016/j.nano.2013.04.007. [PubMed: 23643529].
  • 10. Zhang SX, Gao J, Buchholz TA, Wang Z, Salehpour MR, Drezek RA, et al. Quantifying tumor-selective radiation dose enhancements using gold nanoparticles: a monte carlo simulation study. Biomed Microdevices. 2009;11(4):925-33. doi: 10.1007/s10544-009-9309-5. [PubMed: 19381816].
  • 11. McMahon SJ, Hyland WB, Muir MF, Coulter JA, Jain S, Butterworth KT, et al. Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Sci Rep. 2011;1:18. doi: 10.1038/srep00018. [PubMed: 22355537].
  • 12. Rousseau J, Barth RF, Fernandez M, Adam JF, Balosso J, Esteve F, et al. Efficacy of intracerebral delivery of cisplatin in combination with photon irradiation for treatment of brain tumors. J Neurooncol. 2010;98(3):287-95. doi: 10.1007/s11060-009-0074-3. [PubMed: 20012464].
  • 13. Liu P, Huang Z, Chen Z, Xu R, Wu H, Zang F, et al. Silver nanoparticles: a novel radiation sensitizer for glioma?. Nanoscale. 2013;5(23):11829-36. doi: 10.1039/c3nr01351k. [PubMed: 24126539].
  • 14. Lacombe S, Sech CLE. Advances in radiation biology, Radiosensitization in DNA and living cells. Surf Sci. 2009;603(10):1953-60. doi: 10.1016/j.susc.2008.10.049.
  • 15. Usami N, Kobayashi K, Hirayama R, Furusawa Y, Porcel E, Lacombe S, et al. Comparison of DNA breaks at entrance channel and Bragg peak induced by fast C6+ ions--influence of the addition of platinum atoms on DNA. J Radiat Res. 2010;51(1):21-6. [PubMed: 20173314].
  • 16. Chithrani DB, Jelveh S, Jalali F, van Prooijen M, Allen C, Bristow RG, et al. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res. 2010;173(6):719-28. doi: 10.1667/RR1984.1. [PubMed: 20518651].
  • 17. Jain S, Hirst DG, O'Sullivan JM. Gold nanoparticles as novel agents for cancer therapy. Br J Radiol. 2012;85(1010):101-13. doi: 10.1259/bjr/59448833. [PubMed: 22010024].
  • 18. Jeynes JC, Merchant MJ, Spindler A, Wera AC, Kirkby KJ. Investigation of gold nanoparticle radiosensitization mechanisms using a free radical scavenger and protons of different energies. Phys Med Biol. 2014;59(21):6431-43. doi: 10.1088/0031-9155/59/21/6431. [PubMed: 25296027].
  • 19. Kim JK, Seo SJ, Kim HT, Kim KH, Chung MH, Kim KR, et al. Enhanced proton treatment in mouse tumors through proton irradiated nanoradiator effects on metallic nanoparticles. Phys Med Biol. 2012;57(24):8309-23. doi: 10.1088/0031-9155/57/24/8309. [PubMed: 23201628].
  • 20. Allen C, Borak TB, Tsujii H, Nickoloff JA. Heavy charged particle radiobiology: using enhanced biological effectiveness and improved beam focusing to advance cancer therapy. Mutat Res. 2011;711(1-2):150-7. doi: 10.1016/j.mrfmmm.2011.02.012. [PubMed: 21376738].
  • 21. Tran HN, Karamitros M, Ivanchenko VN, Guatelli S, McKinnon S, Murakami K, et al. Geant4 monte carlo simulation of absorbed dose and radiolysis yields enhancement from a gold nanoparticle under MeV proton irradiation. Nucl Instrum Methods Phys Res B. 2016;373:126-39. doi: 10.1016/j.nimb.2016.01.017.
  • 22. Paganetti H. Series in medical physics and biomedical engineering. In: Webster JG, Ritenour ER, Tabakov S, Ng KH, editors. Florida, United States: CRC Press, Taylor and Francis Group; 2012. Proton therapy physics.
  • 23. Eckerman KF, Cristy M, Ryman JC. The ORNL mathematical phantom series, Oak ridge national laboratory report. Bethel Valley Rd, Oak Ridge, USA: Oak ridge national laboratory; 1996. Available from:
  • 24. International commission on radiation units and measurements . Report 46, photon, electron, proton, andneutron interaction data for body tissues. Bethesda, USA: International Commission on Radiation Units and Measurements, (ICRU); 1992.
  • 25. Kraft G. Tumor therapy with heavy charged particles. Prog Part Nucl Phys. 2000;45:473-544. doi: 10.1016/s0146-6410(00)00112-5.
  • 26. Pedroni E, Bacher R, Blattmann H, Bohringer T, Coray A, Lomax A, et al. The 200-MeV proton therapy project at the Paul Scherrer Institute: conceptual design and practical realization. Med Phys. 1995;22(1):37-53. doi: 10.1118/1.597522. [PubMed: 7715569].
  • 27. Haberer TH, Becher W, Schardt D, Kraft G. Magnetic scanning system for heavy ion therapy. Nucl Instrum Methods Phys Res A. 1993;330(1):296-305. doi: 10.1016/0168-9002(93)91335-k.
  • 28. Jia SB, Hadizadeh MH, Mowlavi AA, Loushab ME. Evaluation of energy deposition and secondary particle production in proton therapy of brain using a slab head phantom. Rep Pract Oncol Radiother. 2014;19(6):376-84. doi: 10.1016/j.rpor.2014.04.008. [PubMed: 25337410].
  • 29. Martinez Rovira I, Prezado Y. Evaluation of the local dose enhancement in the combination of proton therapy and nanoparticles. Med Phys. 2015;42(11):6703-10. doi: 10.1118/1.4934370. [PubMed: 26520760].
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments