To Cite:
Hajizadeh
E, Abdollahi
M, Baghestani
A R, Haghighat
S. Prognostic Cut Point for Breast Cancer Age of Diagnosis,
Int J Cancer Manag.
2018
; 11(5):e9291.
doi: 10.5812/ijcm.9291.
1.
Parker WH. Uterine fibroids. Berek and Novak's Gynecology. 2012.
2.
Forouzanfar MH, Foreman KJ, Delossantos AM, Lozano R, Lopez AD, Murray CJ, et al. Breast and cervical cancer in 187 countries between 1980 and 2010: a systematic analysis. Lancet. 2011;378(9801):1461-84. doi: 10.1016/S0140-6736(11)61351-2. [PubMed: 21924486].
3.
Globocan I, Ferlay J, Bray F, Pisani P, Parkin D. Cancer incidence, mortality and prevalence worldwide. IARCPress. GLOBOCAN; 2000.
4.
Khosravi A, Aghamohamadi S, Kazemi E, Pour Malek F, Shariati M. Mortality profile in Iran (29 provinces) over the years 2006 to 2010. Tehran: Ministry of Health and Medical Education; 2013.
5.
Goodman MS, Li Y, Tiwari RC. Survival analysis with change point hazard functions. 2006.
6.
Mazumdar M, Glassman JR. Categorizing a prognostic variable: review of methods, code for easy implementation and applications to decision-making about cancer treatments. Stat Med. 2000;19(1):113-32. [PubMed: 10623917].
7.
Buettner P, Garbe C, Guggenmoos-Holzmann I. Problems in defining cutoff points of continuous prognostic factors: example of tumor thickness in primary cutaneous melanoma. J Clin Epidemiol. 1997;50(11):1201-10. [PubMed: 9393376].
8.
Wang JJ, Liew G, Klein R, Rochtchina E, Knudtson MD, Klein BE, et al. Retinal vessel diameter and cardiovascular mortality: pooled data analysis from two older populations. Eur Heart J. 2007;28(16):1984-92. doi: 10.1093/eurheartj/ehm221. [PubMed: 17626032].
9.
Tashima R, Nishimura R, Osako T, Nishiyama Y, Okumura Y, Nakano M, et al. Evaluation of an Optimal Cut-Off Point for the Ki-67 Index as a Prognostic Factor in Primary Breast Cancer: A Retrospective Study. PLoS One. 2015;10(7). e0119565. doi: 10.1371/journal.pone.0119565. [PubMed: 26177501]. [PubMed Central: PMC4503758].
10.
Mohsin SK, Weiss H, Havighurst T, Clark GM, Berardo M, Roanh le D, et al. Progesterone receptor by immunohistochemistry and clinical outcome in breast cancer: a validation study. Mod Pathol. 2004;17(12):1545-54. doi: 10.1038/modpathol.3800229. [PubMed: 15272277].
11.
Lopez-Abente G, Ardanaz E, Torrella-Ramos A, Mateos A, Delgado-Sanz C, Chirlaque MD, et al. Changes in colorectal cancer incidence and mortality trends in Spain. Ann Oncol. 2010;21 Suppl 3:iii76-82. doi: 10.1093/annonc/mdq091. [PubMed: 20427364].
12.
Othus M, Li Y, Tiwari R. Change point-cure models with application to estimating the change-point effect of age of diagnosis among prostate cancer patients. J Appl Stat. 2012;39(4):901-11. doi: 10.1080/02664763.2011.626849. [PubMed: 22544992]. [PubMed Central: PMC3337711].
13.
Farewell VT. The use of mixture models for the analysis of survival data with long-term survivors. Biometrics. 1982;38(4):1041-6. [PubMed: 7168793].
14.
Wang D. Survival analysis with long-term survivors. New York: Wiley; 2000.
15.
Li CI, Malone KE, Porter PL, Daling JR. Epidemiologic and molecular risk factors for contralateral breast cancer among young women. Br J Cancer. 2003;89(3):513-8. doi: 10.1038/sj.bjc.6601042. [PubMed: 12888823]. [PubMed Central: PMC2394384].
16.
Lamont EB, Herndon J2, Weeks JC, Henderson IC, Earle CC, Schilsky RL, et al. Measuring disease-free survival and cancer relapse using Medicare claims from CALGB breast cancer trial participants (companion to 9344). J Natl Cancer Inst. 2006;98(18):1335-8. doi: 10.1093/jnci/djj363. [PubMed: 16985253]. [PubMed Central: PMC4158031].
17.
Li Y, Tiwari RC, Guha S. Mixture cure survival models with dependent censoring. J Royal Statistic Soc Series B Statistic Methodol. 2007;69(3):285-306. doi: 10.1111/j.1467-9868.2007.00589.x.
18.
Machin D, Cheung YB, Parmar M. Survival analysis: a practical approach. John Wiley & Sons; 2006.
19.
Contal C, O'Quigley J. An application of changepoint methods in studying the effect of age on survival in breast cancer. Computat Statistic Data Analysis. 1999;30(3):253-70. doi: 10.1016/s0167-9473(98)00096-6.
20.
Gayoso-Diz P, Otero-Gonzalez A, Rodriguez-Alvarez MX, Gude F, Garcia F, De Francisco A, et al. Insulin resistance (HOMA-IR) cut-off values and the metabolic syndrome in a general adult population: effect of gender and age: EPIRCE cross-sectional study. BMC Endocr Disord. 2013;13:47. doi: 10.1186/1472-6823-13-47. [PubMed: 24131857]. [PubMed Central: PMC4016563].
21.
Howard-Anderson J, Ganz PA, Bower JE, Stanton AL. Quality of life, fertility concerns, and behavioral health outcomes in younger breast cancer survivors: a systematic review. J Natl Cancer Inst. 2012;104(5):386-405. doi: 10.1093/jnci/djr541. [PubMed: 22271773].
22.
DeSantis C, Siegel R, Bandi P, Jemal A. Breast cancer statistics, 2011. CA Cancer J Clin. 2011;61(6):409-18. doi: 10.3322/caac.20134. [PubMed: 21969133].
23.
Minicozzi P, Bella F, Toss A, Giacomin A, Fusco M, Zarcone M, et al. Relative and disease-free survival for breast cancer in relation to subtype: a population-based study. J Cancer Res Clin Oncol. 2013;139(9):1569-77. doi: 10.1007/s00432-013-1478-1. [PubMed: 23892409].
24.
Linden W, Vodermaier A, Mackenzie R, Greig D. Anxiety and depression after cancer diagnosis: prevalence rates by cancer type, gender, and age. J Affect Disord. 2012;141(2-3):343-51. doi: 10.1016/j.jad.2012.03.025. [PubMed: 22727334].
25.
Mamounas EP. Age and lymph node status in breast cancer: not a straightforward relationship. J Clin Oncol. 2009;27(18):2900-1. doi: 10.1200/JCO.2009.22.0509. [PubMed: 19451421].
26.
Wildiers H, Van Calster B, van de Poll-Franse LV, Hendrickx W, Roislien J, Smeets A, et al. Relationship between age and axillary lymph node involvement in women with breast cancer. J Clin Oncol. 2009;27(18):2931-7. doi: 10.1200/JCO.2008.16.7619. [PubMed: 19451448].
Readers' Comments