International Journal of Cancer Management

Published by: Kowsar

Prognostic Cut Point for Breast Cancer Age of Diagnosis

Ebrahim Hajizadeh 1 , Mahbubeh Abdollahi 1 , Ahmad Reza Baghestani 2 and Shahpar Haghighat 3 , *
Authors Information
1 Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran
2 Department of Biostatistics, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
3 Quality of Life Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, IR Iran
Article information
  • International Journal of Cancer Management: May 2018, 11 (5); e9291
  • Published Online: May 12, 2018
  • Article Type: Research Article
  • Received: October 7, 2016
  • Revised: January 26, 2018
  • Accepted: February 5, 2018
  • DOI: 10.5812/ijcm.9291

To Cite: Hajizadeh E, Abdollahi M, Baghestani A R, Haghighat S. Prognostic Cut Point for Breast Cancer Age of Diagnosis, Int J Cancer Manag. 2018 ; 11(5):e9291. doi: 10.5812/ijcm.9291.

Copyright © 2018, Cancer Research Center (CRC), Shahid Beheshti University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Methods
3. Results
4. Discussion
  • 1. Parker WH. Uterine fibroids. Berek and Novak's Gynecology. 2012.
  • 2. Forouzanfar MH, Foreman KJ, Delossantos AM, Lozano R, Lopez AD, Murray CJ, et al. Breast and cervical cancer in 187 countries between 1980 and 2010: a systematic analysis. Lancet. 2011;378(9801):1461-84. doi: 10.1016/S0140-6736(11)61351-2. [PubMed: 21924486].
  • 3. Globocan I, Ferlay J, Bray F, Pisani P, Parkin D. Cancer incidence, mortality and prevalence worldwide. IARCPress. GLOBOCAN; 2000.
  • 4. Khosravi A, Aghamohamadi S, Kazemi E, Pour Malek F, Shariati M. Mortality profile in Iran (29 provinces) over the years 2006 to 2010. Tehran: Ministry of Health and Medical Education; 2013.
  • 5. Goodman MS, Li Y, Tiwari RC. Survival analysis with change point hazard functions. 2006.
  • 6. Mazumdar M, Glassman JR. Categorizing a prognostic variable: review of methods, code for easy implementation and applications to decision-making about cancer treatments. Stat Med. 2000;19(1):113-32. [PubMed: 10623917].
  • 7. Buettner P, Garbe C, Guggenmoos-Holzmann I. Problems in defining cutoff points of continuous prognostic factors: example of tumor thickness in primary cutaneous melanoma. J Clin Epidemiol. 1997;50(11):1201-10. [PubMed: 9393376].
  • 8. Wang JJ, Liew G, Klein R, Rochtchina E, Knudtson MD, Klein BE, et al. Retinal vessel diameter and cardiovascular mortality: pooled data analysis from two older populations. Eur Heart J. 2007;28(16):1984-92. doi: 10.1093/eurheartj/ehm221. [PubMed: 17626032].
  • 9. Tashima R, Nishimura R, Osako T, Nishiyama Y, Okumura Y, Nakano M, et al. Evaluation of an Optimal Cut-Off Point for the Ki-67 Index as a Prognostic Factor in Primary Breast Cancer: A Retrospective Study. PLoS One. 2015;10(7). e0119565. doi: 10.1371/journal.pone.0119565. [PubMed: 26177501]. [PubMed Central: PMC4503758].
  • 10. Mohsin SK, Weiss H, Havighurst T, Clark GM, Berardo M, Roanh le D, et al. Progesterone receptor by immunohistochemistry and clinical outcome in breast cancer: a validation study. Mod Pathol. 2004;17(12):1545-54. doi: 10.1038/modpathol.3800229. [PubMed: 15272277].
  • 11. Lopez-Abente G, Ardanaz E, Torrella-Ramos A, Mateos A, Delgado-Sanz C, Chirlaque MD, et al. Changes in colorectal cancer incidence and mortality trends in Spain. Ann Oncol. 2010;21 Suppl 3:iii76-82. doi: 10.1093/annonc/mdq091. [PubMed: 20427364].
  • 12. Othus M, Li Y, Tiwari R. Change point-cure models with application to estimating the change-point effect of age of diagnosis among prostate cancer patients. J Appl Stat. 2012;39(4):901-11. doi: 10.1080/02664763.2011.626849. [PubMed: 22544992]. [PubMed Central: PMC3337711].
  • 13. Farewell VT. The use of mixture models for the analysis of survival data with long-term survivors. Biometrics. 1982;38(4):1041-6. [PubMed: 7168793].
  • 14. Wang D. Survival analysis with long-term survivors. New York: Wiley; 2000.
  • 15. Li CI, Malone KE, Porter PL, Daling JR. Epidemiologic and molecular risk factors for contralateral breast cancer among young women. Br J Cancer. 2003;89(3):513-8. doi: 10.1038/sj.bjc.6601042. [PubMed: 12888823]. [PubMed Central: PMC2394384].
  • 16. Lamont EB, Herndon J2, Weeks JC, Henderson IC, Earle CC, Schilsky RL, et al. Measuring disease-free survival and cancer relapse using Medicare claims from CALGB breast cancer trial participants (companion to 9344). J Natl Cancer Inst. 2006;98(18):1335-8. doi: 10.1093/jnci/djj363. [PubMed: 16985253]. [PubMed Central: PMC4158031].
  • 17. Li Y, Tiwari RC, Guha S. Mixture cure survival models with dependent censoring. J Royal Statistic Soc Series B Statistic Methodol. 2007;69(3):285-306. doi: 10.1111/j.1467-9868.2007.00589.x.
  • 18. Machin D, Cheung YB, Parmar M. Survival analysis: a practical approach. John Wiley & Sons; 2006.
  • 19. Contal C, O'Quigley J. An application of changepoint methods in studying the effect of age on survival in breast cancer. Computat Statistic Data Analysis. 1999;30(3):253-70. doi: 10.1016/s0167-9473(98)00096-6.
  • 20. Gayoso-Diz P, Otero-Gonzalez A, Rodriguez-Alvarez MX, Gude F, Garcia F, De Francisco A, et al. Insulin resistance (HOMA-IR) cut-off values and the metabolic syndrome in a general adult population: effect of gender and age: EPIRCE cross-sectional study. BMC Endocr Disord. 2013;13:47. doi: 10.1186/1472-6823-13-47. [PubMed: 24131857]. [PubMed Central: PMC4016563].
  • 21. Howard-Anderson J, Ganz PA, Bower JE, Stanton AL. Quality of life, fertility concerns, and behavioral health outcomes in younger breast cancer survivors: a systematic review. J Natl Cancer Inst. 2012;104(5):386-405. doi: 10.1093/jnci/djr541. [PubMed: 22271773].
  • 22. DeSantis C, Siegel R, Bandi P, Jemal A. Breast cancer statistics, 2011. CA Cancer J Clin. 2011;61(6):409-18. doi: 10.3322/caac.20134. [PubMed: 21969133].
  • 23. Minicozzi P, Bella F, Toss A, Giacomin A, Fusco M, Zarcone M, et al. Relative and disease-free survival for breast cancer in relation to subtype: a population-based study. J Cancer Res Clin Oncol. 2013;139(9):1569-77. doi: 10.1007/s00432-013-1478-1. [PubMed: 23892409].
  • 24. Linden W, Vodermaier A, Mackenzie R, Greig D. Anxiety and depression after cancer diagnosis: prevalence rates by cancer type, gender, and age. J Affect Disord. 2012;141(2-3):343-51. doi: 10.1016/j.jad.2012.03.025. [PubMed: 22727334].
  • 25. Mamounas EP. Age and lymph node status in breast cancer: not a straightforward relationship. J Clin Oncol. 2009;27(18):2900-1. doi: 10.1200/JCO.2009.22.0509. [PubMed: 19451421].
  • 26. Wildiers H, Van Calster B, van de Poll-Franse LV, Hendrickx W, Roislien J, Smeets A, et al. Relationship between age and axillary lymph node involvement in women with breast cancer. J Clin Oncol. 2009;27(18):2931-7. doi: 10.1200/JCO.2008.16.7619. [PubMed: 19451448].
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments