International Journal of Cancer Management

Published by: Kowsar

Novel Approaches to Immunotherapy in Triple Negative Breast Cancer

Sanaz Tabarestani 1 , Mohammad Esmaeil- Akbari 1 and Saeed Namaki 2 , *
Authors Information
1 Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2 Department of Medical Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Article information
  • International Journal of Cancer Management: December 2018, 11 (12); e87024
  • Published Online: December 15, 2018
  • Article Type: Review Article
  • Received: December 3, 2018
  • Revised: December 8, 2018
  • Accepted: December 8, 2018
  • DOI: 10.5812/ijcm.87024

To Cite: Tabarestani S, Akbari M E, Namaki S. Novel Approaches to Immunotherapy in Triple Negative Breast Cancer, Int J Cancer Manag. 2018 ; 11(12):e87024. doi: 10.5812/ijcm.87024.

Abstract
Copyright © 2018, Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Context
2. Evidence Acquisition
3. Results
4. Conclusions
Acknowledgements
Footnotes
References
  • 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. doi: 10.3322/caac.21492. [PubMed: 30207593].
  • 2. Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: A population-based study from the California cancer Registry. Cancer. 2007;109(9):1721-8. doi: 10.1002/cncr.22618. [PubMed: 17387718].
  • 3. Kohler BA, Sherman RL, Howlader N, Jemal A, Ryerson AB, Henry KA, et al. Annual report to the nation on the status of cancer, 1975 - 2011, featuring incidence of breast cancer subtypes by race/ethnicity, poverty, and state. J Natl Cancer Inst. 2015;107(6):djv048. doi: 10.1093/jnci/djv048. [PubMed: 25825511]. [PubMed Central: PMC4603551].
  • 4. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, et al. Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin Cancer Res. 2007;13(15 Pt 1):4429-34. doi: 10.1158/1078-0432.CCR-06-3045. [PubMed: 17671126].
  • 5. Liedtke C, Mazouni C, Hess KR, Andre F, Tordai A, Mejia JA, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008;26(8):1275-81. doi: 10.1200/JCO.2007.14.4147. [PubMed: 18250347].
  • 6. Yousefi Kashi AS, Yazdanfar S, Akbari M, Rakhsha A . Triple negative breast cancer in iranian women: Clinical profile and survival study. Int J Cancer Manag. 2017;10(8). doi: 10.5812/ijcm.10471.
  • 7. Sharma P. Biology and management of patients with triple-negative breast cancer. Oncologist. 2016;21(9):1050-62. doi: 10.1634/theoncologist.2016-0067. [PubMed: 27401886]. [PubMed Central: PMC5016071].
  • 8. Denkert C, Liedtke C, Tutt A, von Minckwitz G. Molecular alterations in triple-negative breast cancer-the road to new treatment strategies. Lancet. 2017;389(10087):2430-42. doi: 10.1016/S0140-6736(16)32454-0.
  • 9. Kwa MJ, Adams S. Checkpoint inhibitors in triple-negative breast cancer (TNBC): Where to go from here. Cancer. 2018;124(10):2086-103. doi: 10.1002/cncr.31272. [PubMed: 29424936].
  • 10. Braun DA, Burke KP, Van Allen EM. Genomic approaches to understanding response and resistance to immunotherapy. Clin Cancer Res. 2016;22(23):5642-50. doi: 10.1158/1078-0432.CCR-16-0066. [PubMed: 27698000]. [PubMed Central: PMC5135569].
  • 11. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750-67. doi: 10.1172/JCI45014. [PubMed: 21633166]. [PubMed Central: PMC3127435].
  • 12. Lehmann BD, Jovanovic B, Chen X, Estrada MV, Johnson KN, Shyr Y, et al. Refinement of triple-negative breast cancer molecular subtypes: Implications for neoadjuvant chemotherapy selection. PLoS One. 2016;11(6). e0157368. doi: 10.1371/journal.pone.0157368. [PubMed: 27310713]. [PubMed Central: PMC4911051].
  • 13. Lord CJ, Ashworth A. BRCAness revisited. Nat Rev Cancer. 2016;16(2):110-20. doi: 10.1038/nrc.2015.21. [PubMed: 26775620].
  • 14. Telli ML, Timms KM, Reid J, Hennessy B, Mills GB, Jensen KC, et al. Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clin Cancer Res. 2016;22(15):3764-73. doi: 10.1158/1078-0432.CCR-15-2477. [PubMed: 26957554].
  • 15. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502(7471):333-9. doi: 10.1038/nature12634. [PubMed: 24132290]. [PubMed Central: PMC3927368].
  • 16. Ng CKY, Schultheis AM, Bidard FC, Weigelt B, Reis-Filho JS. Breast cancer genomics from microarrays to massively parallel sequencing: Paradigms and new insights. J Natl Cancer Inst. 2015;107(5). doi: 10.1093/jnci/djv015.
  • 17. Pareja F, Geyer FC, Marchio C, Burke KA, Weigelt B, Reis-Filho JS. Triple-negative breast cancer: The importance of molecular and histologic subtyping, and recognition of low-grade variants. NPJ Breast Cancer. 2016;2:16036. doi: 10.1038/npjbcancer.2016.36. [PubMed: 28721389]. [PubMed Central: PMC5515338].
  • 18. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature. 2012;486(7403):395-9. doi: 10.1038/nature10933. [PubMed: 22495314]. [PubMed Central: PMC3863681].
  • 19. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61-70. doi: 10.1038/nature11412. [PubMed: 23000897]. [PubMed Central: PMC3465532].
  • 20. Savas P, Salgado R, Denkert C, Sotiriou C, Darcy PK, Smyth MJ, et al. Clinical relevance of host immunity in breast cancer: From TILs to the clinic. Nat Rev Clin Oncol. 2016;13(4):228-41. doi: 10.1038/nrclinonc.2015.215. [PubMed: 26667975].
  • 21. Stanton SE, Adams S, Disis ML. Variation in the incidence and magnitude of tumor-infiltrating lymphocytes in breast cancer subtypes: A systematic review. JAMA Oncol. 2016;2(10):1354-60. doi: 10.1001/jamaoncol.2016.1061. [PubMed: 27355489].
  • 22. Loi S, Sirtaine N, Piette F, Salgado R, Viale G, Van Eenoo F, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol. 2013;31(7):860-7. doi: 10.1200/JCO.2011.41.0902. [PubMed: 23341518].
  • 23. Liu S, Lachapelle J, Leung S, Gao D, Foulkes WD, Nielsen TO. CD8+ lymphocyte infiltration is an independent favorable prognostic indicator in basal-like breast cancer. Breast Cancer Res. 2012;14(2):R48. doi: 10.1186/bcr3148. [PubMed: 22420471]. [PubMed Central: PMC3446382].
  • 24. Gu-Trantien C, Loi S, Garaud S, Equeter C, Libin M, de Wind A, et al. CD4(+) follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest. 2013;123(7):2873-92. doi: 10.1172/JCI67428. [PubMed: 23778140]. [PubMed Central: PMC3696556].
  • 25. Martinet L, Garrido I, Filleron T, Le Guellec S, Bellard E, Fournie JJ, et al. Human solid tumors contain high endothelial venules: Association with T- and B-lymphocyte infiltration and favorable prognosis in breast cancer. Cancer Res. 2011;71(17):5678-87. doi: 10.1158/0008-5472.CAN-11-0431. [PubMed: 21846823].
  • 26. Stanton SE, Disis ML. Clinical significance of tumor-infiltrating lymphocytes in breast cancer. J Immunother Cancer. 2016;4:59. doi: 10.1186/s40425-016-0165-6. [PubMed: 27777769]. [PubMed Central: PMC5067916].
  • 27. Alexe G, Dalgin GS, Scanfeld D, Tamayo P, Mesirov JP, DeLisi C, et al. High expression of lymphocyte-associated genes in node-negative HER2+ breast cancers correlates with lower recurrence rates. Cancer Res. 2007;67(22):10669-76. doi: 10.1158/0008-5472.CAN-07-0539. [PubMed: 18006808].
  • 28. Broet P, Kuznetsov VA, Bergh J, Liu ET, Miller LD. Identifying gene expression changes in breast cancer that distinguish early and late relapse among uncured patients. Bioinformatics. 2006;22(12):1477-85. doi: 10.1093/bioinformatics/btl110. [PubMed: 16551658].
  • 29. Rody A, Holtrich U, Pusztai L, Liedtke C, Gaetje R, Ruckhaeberle E, et al. T-cell metagene predicts a favorable prognosis in estrogen receptor-negative and HER2-positive breast cancers. Breast Cancer Res. 2009;11(2):R15. doi: 10.1186/bcr2234. [PubMed: 19272155]. [PubMed Central: PMC2688939].
  • 30. Schmidt M, Bohm D, von Torne C, Steiner E, Puhl A, Pilch H, et al. The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res. 2008;68(13):5405-13. doi: 10.1158/0008-5472.CAN-07-5206. [PubMed: 18593943].
  • 31. Nagalla S, Chou JW, Willingham MC, Ruiz J, Vaughn JP, Dubey P, et al. Interactions between immunity, proliferation and molecular subtype in breast cancer prognosis. Genome Biol. 2013;14(4):R34. doi: 10.1186/gb-2013-14-4-r34. [PubMed: 23618380]. [PubMed Central: PMC3798758].
  • 32. National Cancer Institute. FDA approvals - cancer currents blog. United States: National Cancer Institute (NCI); 2018, [cited April 5, 2018]. Available from: https://www.cancer.gov/news-events/cancer-currents-blog/fda-approvals?startMonth=&startyear=&endMonth=&endYear=&page=1&RecordsPerPage=50&Offset=0.
  • 33. Chambers CA, Kuhns MS, Egen JG, Allison JP. CTLA-4-mediated inhibition in regulation of T cell responses: Mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol. 2001;19:565-94. doi: 10.1146/annurev.immunol.19.1.565. [PubMed: 11244047].
  • 34. Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: Similarities, differences, and implications of their inhibition. Am J Clin Oncol. 2016;39(1):98-106. doi: 10.1097/COC.0000000000000239. [PubMed: 26558876]. [PubMed Central: PMC4892769].
  • 35. Liu L, Wang Y, Miao L, Liu Q, Musetti S, Li J, et al. Combination immunotherapy of MUC1 mRNA nano-vaccine and CTLA-4 blockade effectively inhibits growth of triple negative breast cancer. Mol Ther. 2018;26(1):45-55. doi: 10.1016/j.ymthe.2017.10.020. [PubMed: 29258739]. [PubMed Central: PMC5763160].
  • 36. Clinical Trials. Study of tremelimumab in patients with advanced solid tumors. United States: U. S. National Library of Medicine; [cited September 17, 2018]. Available from: https://clinicaltrials.gov/ct2/show/NCT02527434.
  • 37. Clinical Trials. Durvalumab and tremelimumab in combination with first-line chemotherapy in advanced solid tumors. United States: U. S. National Library of Medicine; [cited November 7, 2018]. Available from: https://clinicaltrials.gov/ct2/show/NCT02658214.
  • 38. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677-704. doi: 10.1146/annurev.immunol.26.021607.090331. [PubMed: 18173375].
  • 39. Nanda R, Chow LQ, Dees EC, Berger R, Gupta S, Geva R, et al. Pembrolizumab in patients with advanced triple-negative breast cancer: Phase Ib KEYNOTE-012 study. J Clin Oncol. 2016;34(21):2460-7. doi: 10.1200/JCO.2015.64.8931. [PubMed: 27138582].
  • 40. Clinical Trials. Study of pembrolizumab (MK-3475) monotherapy for metastatic triple-negative breast cancer (MK-3475-086/KEYNOTE-086). United States: U. S. National Library of Medicine; [cited November 27, 2017]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT02447003?term=NCT02447003&rank=1.
  • 41. Clinical Trials. Study of single agent pembrolizumab (MK-3475) versus single agent chemotherapy for metastatic triple negative breast cancer (MK-3475-119/KEYNOTE-119). United States: U. S. National Library of Medicine; [cited September 25, 2017]. Available from: https://clinicaltrials.gov/ct2/show/NCT02555657?term=NCT02555657&rank=1.
  • 42. Clinical Trials. Cisplatin plus romidepsin & nivolumab in locally recurrent or metastatic triple negative breast cancer (TNBC). United States: U. S. National Library of Medicine; [cited October 11, 2018]. Available from: https://clinicaltrials.gov/ct2/show/NCT02393794?term=Nivolumab&cond=Triple+Negative+Breast+Cancer&rank=1.
  • 43. Clinical Trials. A phase II study of nivolumab in combination with cabozantinib for metastatic triple-negative breast cancer. United States: U. S. National Library of Medicine; [cited August 28, 2018]. Available from: https://clinicaltrials.gov/ct2/show/NCT03316586?term=Nivolumab&cond=Triple+Negative+Breast+Cancer.
  • 44. Clinical Trials. A study of atezolizumab and paclitaxel versus placebo and paclitaxel in participants with previously untreated locally advanced or metastatic triple negative breast cancer (TNBC) (IMpassion131). United States: U. S. National Library of Medicine; [cited November 28, 2018]. Available from: https://clinicaltrials.gov/ct2/show/NCT03125902?term=NCT03125902&rank=1.
  • 45. Clinical Trials. A study of atezolizumab in combination with nab-paclitaxel compared with placebo with nab-paclitaxel for participants with previously untreated metastatic triple-negative breast cancer (IMpassion130). United States: U. S. National Library of Medicine; [cited December 10, 2018]. Available from: https://clinicaltrials.gov/ct2/show/NCT02425891?term=NCT02425891&rank=1.
  • 46. Takahashi R, Toh U, Iwakuma N, Takenaka M, Otsuka H, Furukawa M, et al. Feasibility study of personalized peptide vaccination for metastatic recurrent triple-negative breast cancer patients. Breast Cancer Res. 2014;16(4):R70. doi: 10.1186/bcr3685. [PubMed: 24992895]. [PubMed Central: PMC4227005].
  • 47. Clinical Trials. Safety study of chemotherapy combined with dendritic cell vaccine to treat breast cancer. United States: U. S. National Library of Medicine; [cited January 14, 2016]. Available from: https://clinicaltrials.gov/ct2/show/NCT02018458.
  • 48. O'Shaughnessy J, Roberts LK, Smith JL, Levin MK, Timis R, Finholt JP, et al. Safety and initial clinical efficacy of a dendritic cell (DC) vaccine in locally advanced, triple-negative breast cancer (TNBC) patients (pts). J Clin Oncol. 2016;34(15_suppl):1086. doi: 10.1200/JCO.2016.34.15_suppl.1086.
  • 49. Clinical Trials. MUC1 vaccine for triple-negative breast cancer. United States: U. S. National Library of Medicine; [cited July 23, 2018]. Available from: https://clinicaltrials.gov/ct2/show/NCT00986609.
  • 50. Siroy A, Abdul-Karim FW, Miedler J, Fong N, Fu P, Gilmore H, et al. MUC1 is expressed at high frequency in early-stage basal-like triple-negative breast cancer. Hum Pathol. 2013;44(10):2159-66. doi: 10.1016/j.humpath.2013.04.010. [PubMed: 23845471]. [PubMed Central: PMC4167755].
  • 51. Clinical Trials. Folate receptor alpha peptide vaccine with GM-CSF in patients with triple negative breast cancer. United States: U. S. National Library of Medicine; [cited November 17, 2017]. Available from: https://clinicaltrials.gov/ct2/show/NCT02593227?term=NCT02593227&rank=1.
  • 52. Zhang Z, Wang J, Tacha DE, Li P, Bremer RE, Chen H, et al. Folate receptor alpha associated with triple-negative breast cancer and poor prognosis. Arch Pathol Lab Med. 2014;138(7):890-5. doi: 10.5858/arpa.2013-0309-OA. [PubMed: 24028341].
  • 53. Ginter PS, McIntire PJ, Cui X, Irshaid L, Liu Y, Chen Z, et al. Folate receptor alpha expression is associated with increased risk of recurrence in triple-negative breast cancer. Clin Breast Cancer. 2017;17(7):544-9. doi: 10.1016/j.clbc.2017.03.007. [PubMed: 28410844].
  • 54. Tabarestani S, Motallebi M, Akbari ME, Moghani MM, Shojaee L. Analysis of BRCA1/2 mutations and performance of manchester scoring system in high risk iranian breast cancer patients: A pilot study. Int J Cancer Manag. 2017;10(12). doi: 10.5812/ijcm.60392.
  • 55. Tabarestani S, Motallebi M, Akbari ME. Are estrogen receptor genomic aberrations predictive of hormone therapy response in breast cancer? Iran J Cancer Prev. 2016;9(4). e6565. doi: 10.17795/ijcp-6565. [PubMed: 27761212]. [PubMed Central: PMC5056018].
  • 56. Tabarestani S, Ghaderian SM, Rezvani H, Mirfakhraie R, Ebrahimi A, Attarian H, et al. Prognostic and predictive value of copy number alterations in invasive breast cancer as determined by multiplex ligation-dependent probe amplification. Cell Oncol (Dordr). 2014;37(2):107-18. doi: 10.1007/s13402-013-0165-1. [PubMed: 24573687].
  • 57. Tabarestani S, Ghaderian SM, Rezvani H, Mirfakhraie R. Expression profiling of breast cancer patients treated with tamoxifen: Prognostic or predictive significance. Med Oncol. 2014;31(4):896. doi: 10.1007/s12032-014-0896-5. [PubMed: 24563328].
  • 58. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823-33. doi: 10.1056/NEJMoa1606774. [PubMed: 27718847].
  • 59. Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet. 2016;387(10027):1540-50. doi: 10.1016/S0140-6736(15)01281-7.
  • 60. Patel SP, Kurzrock R. PD-L1 Expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther. 2015;14(4):847-56. doi: 10.1158/1535-7163.MCT-14-0983. [PubMed: 25695955].
  • 61. Koemans WJ, Chalabi M, van Sandick JW, van Dieren JM, Kodach LL. Beyond the PD-L1 horizon: In search for a good biomarker to predict success of immunotherapy in gastric and esophageal adenocarcinoma. Cancer Lett. 2018;442:279-86. doi: 10.1016/j.canlet.2018.11.001. [PubMed: 30419350].
  • 62. Chan TA, Yarchoan M, Jaffee E, Swanton C, Quezada SA, Stenzinger A, et al. Development of tumor mutation burden as an immunotherapy biomarker: Utility for the oncology clinic. Ann Oncol. 2018. doi: 10.1093/annonc/mdy495.
  • 63. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499(7457):214-8. doi: 10.1038/nature12213. [PubMed: 23770567]. [PubMed Central: PMC3919509].
  • 64. Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9(1):34. doi: 10.1186/s13073-017-0424-2. [PubMed: 28420421]. [PubMed Central: PMC5395719].
  • 65. Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med. 2017;23(6):703-13. doi: 10.1038/nm.4333. [PubMed: 28481359]. [PubMed Central: PMC5461196].
  • 66. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124-8. doi: 10.1126/science.aaa1348. [PubMed: 25765070]. [PubMed Central: PMC4993154].
  • 67. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371(23):2189-99. doi: 10.1056/NEJMoa1406498. [PubMed: 25409260]. [PubMed Central: PMC4315319].
  • 68. Riaz N, Morris L, Havel JJ, Makarov V, Desrichard A, Chan TA. The role of neoantigens in response to immune checkpoint blockade. Int Immunol. 2016;28(8):411-9. doi: 10.1093/intimm/dxw019. [PubMed: 27048318]. [PubMed Central: PMC4986233].
  • 69. Tabarestani S, Akbari ME, Namaki S. Genomics role in cancer immunosurveillance: Impact on immunotherapy response. Int J Cancer Manag. 2018;11(11). doi: 10.5812/ijcm.85552.
  • 70. Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T. Tumour antigens recognized by T lymphocytes: At the core of cancer immunotherapy. Nat Rev Cancer. 2014;14(2):135-46. doi: 10.1038/nrc3670. [PubMed: 24457417].
  • 71. Snyder A, Chan TA. Immunogenic peptide discovery in cancer genomes. Curr Opin Genet Dev. 2015;30:7-16. doi: 10.1016/j.gde.2014.12.003. [PubMed: 25588790].
  • 72. Modrich P. Mechanisms in eukaryotic mismatch repair. J Biol Chem. 2006;281(41):30305-9. doi: 10.1074/jbc.R600022200. [PubMed: 16905530]. [PubMed Central: PMC2234602].
  • 73. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357(6349):409-13. doi: 10.1126/science.aan6733. [PubMed: 28596308]. [PubMed Central: PMC5576142].
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments