International Journal of Cancer Management

Published by: Kowsar
Crossmark

Genomics Role in Cancer Immunosurveillance: Impact on Immunotherapy Response

Sanaz Tabarestani ORCID 1 , Mohammad Esmaeil- Akbari ORCID 1 and Saeed Namaki ORCID 2 , *
Authors Information
1 Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2 Department of Medical Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Article information
  • International Journal of Cancer Management: November 2018, 11 (11); e85552
  • Published Online: November 12, 2018
  • Article Type: Review Article
  • Received: October 20, 2018
  • Revised: October 26, 2018
  • Accepted: October 28, 2018
  • DOI: 10.5812/ijcm.85552

How to Cite: Tabarestani S, Akbari M E, Namaki S. Genomics Role in Cancer Immunosurveillance: Impact on Immunotherapy Response, Int J Cancer Manag. 2018 ; 11(11):e85552. doi: 10.5812/ijcm.85552.

Abstract
Copyright © 2018, Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Context
2. Evidence Acquisition
3. Results
4. Conclusions
Acknowledgements
Footnotes
References
  • 1. Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480(7378):480-9. doi: 10.1038/nature10673. [PubMed: 22193102]. [PubMed Central: PMC3967235].
  • 2. Topalian SL, Weiner GJ, Pardoll DM. Cancer immunotherapy comes of age. J Clin Oncol. 2011;29(36):4828-36. doi: 10.1200/JCO.2011.38.0899. [PubMed: 22042955]. [PubMed Central: PMC3255990].
  • 3. Nauts HC, Fowler GA, Bogatko FH. A review of the influence of bacterial infection and of bacterial products (Coley's toxins) on malignant tumors in man; a critical analysis of 30 inoperable cases treated by Coley's mixed toxins, in which diagnosis was confirmed by microscopic examination selected for special study. Acta Med Scand Suppl. 1953;276:1-103. [PubMed: 13039964].
  • 4. Grimm EA, Mazumder A, Zhang HZ, Rosenberg SA. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med. 1982;155(6):1823-41. doi: 10.1084/jem.155.6.1823. [PubMed: 6176669]. [PubMed Central: PMC2186695].
  • 5. Dutcher JP, Creekmore S, Weiss GR, Margolin K, Markowitz AB, Roper M, et al. A phase II study of interleukin-2 and lymphokine-activated killer cells in patients with metastatic malignant melanoma. J Clin Oncol. 1989;7(4):477-85. doi: 10.1200/JCO.1989.7.4.477. [PubMed: 2647913].
  • 6. Atkins MB, Lotze MT, Dutcher JP, Fisher RI, Weiss G, Margolin K, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: Analysis of 270 patients treated between 1985 and 1993. J Clin Oncol. 1999;17(7):2105-16. doi: 10.1200/JCO.1999.17.7.2105. [PubMed: 10561265].
  • 7. Parkinson DR, Abrams JS, Wiernik PH, Rayner AA, Margolin KA, Van Echo DA, et al. Interleukin-2 therapy in patients with metastatic malignant melanoma: A phase II study. J Clin Oncol. 1990;8(10):1650-6. doi: 10.1200/JCO.1990.8.10.1650. [PubMed: 2213101].
  • 8. Rosenberg SA, Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS, Parkinson DR, et al. Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA. 1994;271(12):907-13. doi: 10.1001/jama.1994.03510360033032. [PubMed: 8120958].
  • 9. Krown SE, Burk MW, Kirkwood JM, Kerr D, Morton DL, Oettgen HF. Human leukocyte (alpha) interferon in metastatic malignant melanoma: The American Cancer Society phase II trial. Cancer Treat Rep. 1984;68(5):723-6. [PubMed: 6722830].
  • 10. Kirkwood JM, Ernstoff MS, Davis CA, Reiss M, Ferraresi R, Rudnick SA. Comparison of intramuscular and intravenous recombinant alpha-2 interferon in melanoma and other cancers. Ann Intern Med. 1985;103(1):32-6. doi: 10.7326/0003-4819-103-1-32. [PubMed: 4003987].
  • 11. Kirkwood JM, Strawderman MH, Ernstoff MS, Smith TJ, Borden EC, Blum RH. Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: The Eastern Cooperative Oncology Group trial EST 1684. J Clin Oncol. 1996;14(1):7-17. doi: 10.1200/JCO.1996.14.1.7. [PubMed: 8558223].
  • 12. Kirkwood JM, Ibrahim JG, Sosman JA, Sondak VK, Agarwala SS, Ernstoff MS, et al. High-dose interferon alfa-2b significantly prolongs relapse-free and overall survival compared with the GM2-KLH/QS-21 vaccine in patients with resected stage IIB-III melanoma: Results of intergroup trial E1694/S9512/C509801. J Clin Oncol. 2001;19(9):2370-80. doi: 10.1200/JCO.2001.19.9.2370. [PubMed: 11331315].
  • 13. Nahta R, Esteva FJ. Herceptin: Mechanisms of action and resistance. Cancer Lett. 2006;232(2):123-38. doi: 10.1016/j.canlet.2005.01.041. [PubMed: 16458110].
  • 14. Weiner GJ. Rituximab: Mechanism of action. Semin Hematol. 2010;47(2):115-23. doi: 10.1053/j.seminhematol.2010.01.011. [PubMed: 20350658]. [PubMed Central: PMC2848172].
  • 15. Gill S, June CH. Going viral: Chimeric antigen receptor T-cell therapy for hematological malignancies. Immunol Rev. 2015;263(1):68-89. doi: 10.1111/imr.12243. [PubMed: 25510272].
  • 16. Hacohen N, Fritsch EF, Carter TA, Lander ES, Wu CJ. Getting personal with neoantigen-based therapeutic cancer vaccines. Cancer Immunol Res. 2013;1(1):11-5. doi: 10.1158/2326-6066.CIR-13-0022. [PubMed: 24777245]. [PubMed Central: PMC4033902].
  • 17. Ribas A. Tumor immunotherapy directed at PD-1. N Engl J Med. 2012;366(26):2517-9. doi: 10.1056/NEJMe1205943. [PubMed: 22658126].
  • 18. Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348(6230):56-61. doi: 10.1126/science.aaa8172. [PubMed: 25838373].
  • 19. Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N Engl J Med. 2015;372(4):311-9. doi: 10.1056/NEJMoa1411087. [PubMed: 25482239]. [PubMed Central: PMC4348009].
  • 20. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627-39. doi: 10.1056/NEJMoa1507643. [PubMed: 26412456]. [PubMed Central: PMC5705936].
  • 21. Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet. 2016;387(10027):1540-50. doi: 10.1016/S0140-6736(15)01281-7. [PubMed: 26712084].
  • 22. Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K, McDermott D, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 2015;372(21):2006-17. doi: 10.1056/NEJMoa1414428. [PubMed: 25891304]. [PubMed Central: PMC5744258].
  • 23. Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi A, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: A single-arm, multicentre, phase 2 trial. Lancet. 2016;387(10031):1909-20. doi: 10.1016/S0140-6736(16)00561-4. [PubMed: 26952546]. [PubMed Central: PMC5480242].
  • 24. Seiwert TY, Burtness B, Mehra R, Weiss J, Berger R, Eder JP, et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): An open-label, multicentre, phase 1b trial. Lancet Oncol. 2016;17(7):956-65. doi: 10.1016/S1470-2045(16)30066-3. [PubMed: 27247226].
  • 25. Tian T, Olson S, Whitacre JM, Harding A. The origins of cancer robustness and evolvability. Integr Biol (Camb). 2011;3(1):17-30. doi: 10.1039/c0ib00046a. [PubMed: 20944865].
  • 26. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415-21. doi: 10.1038/nature12477. [PubMed: 23945592]. [PubMed Central: PMC3776390].
  • 27. Pfeifer GP. Environmental exposures and mutational patterns of cancer genomes. Genome Med. 2010;2(8):54. doi: 10.1186/gm175. [PubMed: 20707934]. [PubMed Central: PMC2945011].
  • 28. Pena-Diaz J, Bregenhorn S, Ghodgaonkar M, Follonier C, Artola-Boran M, Castor D, et al. Noncanonical mismatch repair as a source of genomic instability in human cells. Mol Cell. 2012;47(5):669-80. doi: 10.1016/j.molcel.2012.07.006. [PubMed: 22864113].
  • 29. Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature. 2009;458(7239):719-24. doi: 10.1038/nature07943. [PubMed: 19360079]. [PubMed Central: PMC2821689].
  • 30. Loeb LA, Bielas JH, Beckman RA. Cancers exhibit a mutator phenotype: Clinical implications. Cancer Res. 2008;68(10):3551-7. discussion 3557. doi: 10.1158/0008-5472.CAN-07-5835. [PubMed: 18483233].
  • 31. Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature. 1998;396(6712):643-9. doi: 10.1038/25292. [PubMed: 9872311].
  • 32. Beerenwinkel N, Antal T, Dingli D, Traulsen A, Kinzler KW, Velculescu VE, et al. Genetic progression and the waiting time to cancer. PLoS Comput Biol. 2007;3(11). e225. doi: 10.1371/journal.pcbi.0030225. [PubMed: 17997597]. [PubMed Central: PMC2065895].
  • 33. Iranzo J, Martincorena I, Koonin EV. Cancer-mutation network and the number and specificity of driver mutations. Proc Natl Acad Sci U S A. 2018;115(26):E6010-9. doi: 10.1073/pnas.1803155115. [PubMed: 29895694]. [PubMed Central: PMC6042135].
  • 34. Martincorena I, Raine KM, Gerstung M, Dawson KJ, Haase K, Van Loo P, et al. Universal patterns of selection in cancer and somatic tissues. Cell. 2018;173(7):1823. doi: 10.1016/j.cell.2018.06.001. [PubMed: 29906452]. [PubMed Central: PMC6005233].
  • 35. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science. 2013;339(6127):1546-58. doi: 10.1126/science.1235122. [PubMed: 23539594]. [PubMed Central: PMC3749880].
  • 36. Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T. Tumour antigens recognized by T lymphocytes: At the core of cancer immunotherapy. Nat Rev Cancer. 2014;14(2):135-46. doi: 10.1038/nrc3670. [PubMed: 24457417].
  • 37. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: From immunosurveillance to tumor escape. Nat Immunol. 2002;3(11):991-8. doi: 10.1038/ni1102-991. [PubMed: 12407406].
  • 38. Mullard A. New checkpoint inhibitors ride the immunotherapy tsunami. Nat Rev Drug Discov. 2013;12(7):489-92. doi: 10.1038/nrd4066. [PubMed: 23812256].
  • 39. Ikeda H, Ohta N, Furukawa K, Miyazaki H, Wang L, Kuribayashi K, et al. Mutated mitogen-activated protein kinase: A tumor rejection antigen of mouse sarcoma. Proc Natl Acad Sci U S A. 1997;94(12):6375-9. doi: 10.1073/pnas.94.12.6375. [PubMed: 9177225]. [PubMed Central: PMC21057].
  • 40. Kreiter S, Vormehr M, van de Roemer N, Diken M, Lower M, Diekmann J, et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature. 2015;520(7549):692-6. doi: 10.1038/nature14426. [PubMed: 25901682]. [PubMed Central: PMC4838069].
  • 41. Yadav M, Jhunjhunwala S, Phung QT, Lupardus P, Tanguay J, Bumbaca S, et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature. 2014;515(7528):572-6. doi: 10.1038/nature14001. [PubMed: 25428506].
  • 42. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541(7637):321-30. doi: 10.1038/nature21349. [PubMed: 28102259].
  • 43. Castle JC, Kreiter S, Diekmann J, Lower M, van de Roemer N, de Graaf J, et al. Exploiting the mutanome for tumor vaccination. Cancer Res. 2012;72(5):1081-91. doi: 10.1158/0008-5472.CAN-11-3722. [PubMed: 22237626].
  • 44. Tran E, Turcotte S, Gros A, Robbins PF, Lu YC, Dudley ME, et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science. 2014;344(6184):641-5. doi: 10.1126/science.1251102. [PubMed: 24812403].
  • 45. Linnemann C, van Buuren MM, Bies L, Verdegaal EM, Schotte R, Calis JJ, et al. High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nat Med. 2015;21(1):81-5. doi: 10.1038/nm.3773. [PubMed: 25531942].
  • 46. Robbins PF, Lu YC, El-Gamil M, Li YF, Gross C, Gartner J, et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med. 2013;19(6):747-52. doi: 10.1038/nm.3161. [PubMed: 23644516]. [PubMed Central: PMC3757932].
  • 47. Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17(13):4550-7. doi: 10.1158/1078-0432.CCR-11-0116. [PubMed: 21498393]. [PubMed Central: PMC3131487].
  • 48. Besser MJ, Shapira-Frommer R, Treves AJ, Zippel D, Itzhaki O, Hershkovitz L, et al. Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients. Clin Cancer Res. 2010;16(9):2646-55. doi: 10.1158/1078-0432.CCR-10-0041. [PubMed: 20406835].
  • 49. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science. 2002;298(5594):850-4. doi: 10.1126/science.1076514. [PubMed: 12242449]. [PubMed Central: PMC1764179].
  • 50. Wolfel T, Hauer M, Schneider J, Serrano M, Wolfel C, Klehmann-Hieb E, et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science. 1995;269(5228):1281-4. doi: 10.1126/science.7652577. [PubMed: 7652577].
  • 51. Schumacher T, Bunse L, Pusch S, Sahm F, Wiestler B, Quandt J, et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature. 2014;512(7514):324-7. doi: 10.1038/nature13387. [PubMed: 25043048].
  • 52. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69-74. doi: 10.1126/science.aaa4971. [PubMed: 25838375].
  • 53. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168(4):707-23. doi: 10.1016/j.cell.2017.01.017. [PubMed: 28187290]. [PubMed Central: PMC5391692].
  • 54. Tabarestani S, Ghaderian SM, Rezvani H, Mirfakhraie R, Ebrahimi A, Attarian H, et al. Prognostic and predictive value of copy number alterations in invasive breast cancer as determined by multiplex ligation-dependent probe amplification. Cell Oncol (Dordr). 2014;37(2):107-18. doi: 10.1007/s13402-013-0165-1. [PubMed: 24573687].
  • 55. Tabarestani S, Ghaderian SM, Rezvani H, Mirfakhraie R. Expression profiling of breast cancer patients treated with tamoxifen: Prognostic or predictive significance. Med Oncol. 2014;31(4):896. doi: 10.1007/s12032-014-0896-5. [PubMed: 24563328].
  • 56. Tabarestani S, Motallebi M, Akbari ME. Are estrogen receptor genomic aberrations predictive of hormone therapy response in breast cancer? Iran J Cancer Prev. 2016;9(4). e6565. doi: 10.17795/ijcp-6565. [PubMed: 27761212]. [PubMed Central: PMC5056018].
  • 57. Tabarestani S, Motallebi M, Akbari ME, Malekzadeh Moghani Mona, Shojaee Leyla. Analysis of BRCA1/2 mutations and performance of manchester scoring system in high risk Iranian breast cancer patients: A pilot study. Int J Cancer Manag. 2017;10(12). doi: 10.5812/ijcm.60392.
  • 58. Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 2014;515(7528):577-81. doi: 10.1038/nature13988. [PubMed: 25428507]. [PubMed Central: PMC4279952].
  • 59. Sucker A, Zhao F, Real B, Heeke C, Bielefeld N, Mabetaen S, et al. Genetic evolution of T-cell resistance in the course of melanoma progression. Clin Cancer Res. 2014;20(24):6593-604. doi: 10.1158/1078-0432.CCR-14-0567. [PubMed: 25294904].
  • 60. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372(21):2018-28. doi: 10.1056/NEJMoa1501824. [PubMed: 25891174].
  • 61. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563-7. doi: 10.1038/nature14011. [PubMed: 25428504]. [PubMed Central: PMC4836193].
  • 62. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823-33. doi: 10.1056/NEJMoa1606774. [PubMed: 27718847].
  • 63. Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med. 2017;377(25):2500-1. doi: 10.1056/NEJMc1713444. [PubMed: 29262275].
  • 64. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371(23):2189-99. doi: 10.1056/NEJMoa1406498. [PubMed: 25409260]. [PubMed Central: PMC4315319].
  • 65. Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science. 2015;350(6257):207-11. doi: 10.1126/science.aad0095. [PubMed: 26359337]. [PubMed Central: PMC5054517].
  • 66. Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell. 2016;165(1):35-44. doi: 10.1016/j.cell.2016.02.065. [PubMed: 26997480]. [PubMed Central: PMC4808437].
  • 67. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124-8. doi: 10.1126/science.aaa1348. [PubMed: 25765070]. [PubMed Central: PMC4993154].
  • 68. Spigel DR, Schrock AB, Fabrizio D, Frampton GM, Sun J, He J, et al. Total mutation burden (TMB) in lung cancer (LC) and relationship with response to PD-1/PD-L1 targeted therapies. J Clin Oncol. 2016;34(15_suppl):9017. doi: 10.1200/JCO.2016.34.15_suppl.9017.
  • 69. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509-20. doi: 10.1056/NEJMoa1500596. [PubMed: 26028255]. [PubMed Central: PMC4481136].
  • 70. Gerlinger M, Rowan AJ, Horswell S, Math M, Larkin J, Endesfelder D, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883-92. doi: 10.1056/NEJMoa1113205. [PubMed: 22397650]. [PubMed Central: PMC4878653].
  • 71. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357(6349):409-13. doi: 10.1126/science.aan6733. [PubMed: 28596308]. [PubMed Central: PMC5576142].
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments