International Journal of Cancer Management

Published by: Kowsar

BMI1 Roles in Cancer Stem Cells and Its Association with MicroRNAs Dysregulation in Cancer: Emphasis on Colorectal Cancer

Mohammad Hasan Soheilifar 1 , Abdolvahab Moshtaghian 2 , Hamid Maadi 3 , Fereshteh Izadi 4 and Massoud Saidijam 1 , *
Authors Information
1 Research Center for Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
2 Deputy of Research and Technology, Semnan University of Medical Sciences, Semnan, Iran
3 Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
4 Department of Plant Breeding and Biotechnology, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
Article information
  • International Journal of Cancer Management: September 2018, 11 (9); e82926
  • Published Online: September 5, 2018
  • Article Type: Review Article
  • Received: April 2, 2018
  • Revised: July 29, 2018
  • Accepted: August 6, 2018
  • DOI: 10.5812/ijcm.82926

To Cite: Soheilifar M H, Moshtaghian A, Maadi H, Izadi F, Saidijam M. BMI1 Roles in Cancer Stem Cells and Its Association with MicroRNAs Dysregulation in Cancer: Emphasis on Colorectal Cancer, Int J Cancer Manag. 2018 ; 11(9):e82926. doi: 10.5812/ijcm.82926.

Abstract
Copyright © 2018, Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Context
2. Evidence Acquisition
3. Results
4. Conclusions
Footnotes
References
  • 1. Wicha MS. Targeting self-renewal, an Achilles' heel of cancer stem cells. Nat Med. 2014;20(1):14-5. doi: 10.1038/nm.3434. [PubMed: 24398956].
  • 2. Garza-Trevino EN, Said-Fernandez SL, Martinez-Rodriguez HG. Understanding the colon cancer stem cells and perspectives on treatment. Cancer Cell Int. 2015;15(1):2. doi: 10.1186/s12935-015-0163-7. [PubMed: 25685060]. [PubMed Central: PMC4328053].
  • 3. Espersen ML, Olsen J, Linnemann D, Hogdall E, Troelsen JT. Clinical implications of intestinal stem cell markers in colorectal cancer. Clin Colorectal Cancer. 2015;14(2):63-71. doi: 10.1016/j.clcc.2014.12.004. [PubMed: 25657049].
  • 4. Bommi PV, Dimri M, Sahasrabuddhe AA, Khandekar J, Dimri GP. The polycomb group protein BMI1 is a transcriptional target of HDAC inhibitors. Cell Cycle. 2010;9(13):2663-73. doi: 10.4161/cc.9.13.12147. [PubMed: 20543557]. [PubMed Central: PMC3010287].
  • 5. Gil J, Peters G. Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nat Rev Mol Cell Biol. 2006;7(9):667-77. doi: 10.1038/nrm1987. [PubMed: 16921403].
  • 6. Hamaï A, Codogno P, Mehrpour M. Cancer stem cells and autophagy: Facts and perspectives. J Cancer Stem Cell Res. 2014;2(5):1. doi: 10.14343/JCSCR.2014.2e1005.
  • 7. Roy S, Majumdar AP. Signaling in colon cancer stem cells. J Mol Signal. 2012;7(1):11. doi: 10.1186/1750-2187-7-11. [PubMed: 22866952]. [PubMed Central: PMC3485105].
  • 8. Reinisch C, Kandutsch S, Uthman A, Pammer J. BMI-1: a protein expressed in stem cells, specialized cells and tumors of the gastrointestinal tract. Histol Histopathol. 2006;21(11):1143-9. doi: 10.14670/HH-21.1143. [PubMed: 16874656].
  • 9. Cao L, Bombard J, Cintron K, Sheedy J, Weetall ML, Davis TW. BMI1 as a novel target for drug discovery in cancer. J Cell Biochem. 2011;112(10):2729-41. doi: 10.1002/jcb.23234. [PubMed: 21678481].
  • 10. Sekar D, Krishnan R, Panagal M, Sivakumar P, Gopinath V, Basam V. Deciphering the role of microRNA 21 in cancer stem cells (CSCs). Genes Diseases. 2016;3(4):277-81. doi: 10.1016/j.gendis.2016.05.002.
  • 11. van Lohuizen M, Verbeek S, Scheijen B, Wientjens E, van der Gulden H, Berns A. Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell. 1991;65(5):737-52. [PubMed: 1904008].
  • 12. Siddique HR, Saleem M. Role of BMI1, a stem cell factor, in cancer recurrence and chemoresistance: preclinical and clinical evidences. Stem Cells. 2012;30(3):372-8. doi: 10.1002/stem.1035. [PubMed: 22252887].
  • 13. Dimri GP, Martinez JL, Jacobs JJ, Keblusek P, Itahana K, Van Lohuizen M, et al. The Bmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells. Cancer Res. 2002;62(16):4736-45. [PubMed: 12183433].
  • 14. Huber GF, Albinger-Hegyi A, Soltermann A, Roessle M, Graf N, Haerle SK, et al. Expression patterns of Bmi-1 and p16 significantly correlate with overall, disease-specific, and recurrence-free survival in oropharyngeal squamous cell carcinoma. Cancer. 2011;117(20):4659-70. doi: 10.1002/cncr.26100. [PubMed: 21448927].
  • 15. Rechsteiner M, Rogers SW. PEST sequences and regulation by proteolysis. Trends Biochem Sci. 1996;21(7):267-71. [PubMed: 8755249].
  • 16. Yadav AK, Sahasrabuddhe AA, Dimri M, Bommi PV, Sainger R, Dimri GP. Deletion analysis of BMI1 oncoprotein identifies its negative regulatory domain. Mol Cancer. 2010;9:158. doi: 10.1186/1476-4598-9-158. [PubMed: 20569464]. [PubMed Central: PMC2900245].
  • 17. Soheilifar MH, Javeri A, Amini H, Taha MF. Generation of dopamine-secreting cells from human adipose tissue-derived stem cells in vitro. Rejuvenation Res. 2018;21(4):360-8. doi: 10.1089/rej.2017.1994. [PubMed: 29207913].
  • 18. Grotenhuis BA, Wijnhoven BP, van Lanschot JJ. Cancer stem cells and their potential implications for the treatment of solid tumors. J Surg Oncol. 2012;106(2):209-15. doi: 10.1002/jso.23069. [PubMed: 22371125].
  • 19. Soheilifar MH, Taheri RA, Zolfaghari Emameh R, Moshtaghian A, Kooshki H, Motie MR. Molecular Landscape in Alveolar Soft Part Sarcoma: Implications for Molecular Targeted Therapy. Biomed Pharmacother. 2018;103:889-96. doi: 10.1016/j.biopha.2018.04.117. [PubMed: 29710505].
  • 20. Yadirgi G, Leinster V, Acquati S, Bhagat H, Shakhova O, Marino S. Conditional activation of Bmi1 expression regulates self-renewal, apoptosis, and differentiation of neural stem/progenitor cells in vitro and in vivo. Stem Cells. 2011;29(4):700-12. doi: 10.1002/stem.614. [PubMed: 21305672].
  • 21. Sangiorgi E, Capecchi MR. Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet. 2008;40(7):915-20. doi: 10.1038/ng.165. [PubMed: 18536716]. [PubMed Central: PMC2906135].
  • 22. Yan KS, Chia LA, Li X, Ootani A, Su J, Lee JY, et al. The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proc Natl Acad Sci U S A. 2012;109(2):466-71. doi: 10.1073/pnas.1118857109. [PubMed: 22190486]. [PubMed Central: PMC3258636].
  • 23. Bruggeman SW, Hulsman D, Tanger E, Buckle T, Blom M, Zevenhoven J, et al. Bmi1 controls tumor development in an Ink4a/Arf-independent manner in a mouse model for glioma. Cancer Cell. 2007;12(4):328-41. doi: 10.1016/j.ccr.2007.08.032. [PubMed: 17936558].
  • 24. Beck B, Blanpain C. Unravelling cancer stem cell potential. Nat Rev Cancer. 2013;13(10):727-38. doi: 10.1038/nrc3597. [PubMed: 24060864].
  • 25. Pardal R, Molofsky AV, He S, Morrison SJ. Stem cell self-renewal and cancer cell proliferation are regulated by common networks that balance the activation of proto-oncogenes and tumor suppressors. Cold Spring Harb Symp Quant Biol. 2005;70:177-85. doi: 10.1101/sqb.2005.70.057. [PubMed: 16869752].
  • 26. Liu S, Dontu G, Wicha MS. Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res. 2005;7(3):86-95. doi: 10.1186/bcr1021. [PubMed: 15987436]. [PubMed Central: PMC1143566].
  • 27. Wang X, Wang C, Zhang X, Hua R, Gan L, Huang M, et al. Bmi-1 regulates stem cell-like properties of gastric cancer cells via modulating miRNAs. J Hematol Oncol. 2016;9(1):90. doi: 10.1186/s13045-016-0323-9. [PubMed: 27644439]. [PubMed Central: PMC5029045].
  • 28. Paranjape AN, Balaji SA, Mandal T, Krushik EV, Nagaraj P, Mukherjee G, et al. Bmi1 regulates self-renewal and epithelial to mesenchymal transition in breast cancer cells through Nanog. BMC Cancer. 2014;14:785. doi: 10.1186/1471-2407-14-785. [PubMed: 25348805]. [PubMed Central: PMC4223733].
  • 29. Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, Beekman C, et al. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev. 2007;21(5):525-30. doi: 10.1101/gad.415507. [PubMed: 17344414]. [PubMed Central: PMC1820894].
  • 30. Park IK, Morrison SJ, Clarke MF. Bmi1, stem cells, and senescence regulation. J Clin Invest. 2004;113(2):175-9. doi: 10.1172/JCI20800. [PubMed: 14722607]. [PubMed Central: PMC311443].
  • 31. Molofsky AV, He S, Bydon M, Morrison SJ, Pardal R. Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev. 2005;19(12):1432-7. doi: 10.1101/gad.1299505. [PubMed: 15964994]. [PubMed Central: PMC1151659].
  • 32. Xu CR, Lee S, Ho C, Bommi P, Huang SA, Cheung ST, et al. Bmi1 functions as an oncogene independent of Ink4A/Arf repression in hepatic carcinogenesis. Mol Cancer Res. 2009;7(12):1937-45. doi: 10.1158/1541-7786.MCR-09-0333. [PubMed: 19934271]. [PubMed Central: PMC2796287].
  • 33. Raimondi C, Gianni W, Cortesi E, Gazzaniga P. Cancer stem cells and epithelial-mesenchymal transition: revisiting minimal residual disease. Curr Cancer Drug Targets. 2010;10(5):496-508. [PubMed: 20384575].
  • 34. Ren H, Du P, Ge Z, Jin Y, Ding D, Liu X, et al. TWIST1 and BMI1 in Cancer Metastasis and Chemoresistance. J Cancer. 2016;7(9):1074-80. doi: 10.7150/jca.14031. [PubMed: 27326250]. [PubMed Central: PMC4911874].
  • 35. Wu J, Hu D, Yang G, Zhou J, Yang C, Gao Y, et al. Down-regulation of BMI-1 cooperates with artemisinin on growth inhibition of nasopharyngeal carcinoma cells. J Cell Biochem. 2011;112(7):1938-48. doi: 10.1002/jcb.23114. [PubMed: 21445878].
  • 36. Song LB, Li J, Liao WT, Feng Y, Yu CP, Hu LJ, et al. The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells. J Clin Invest. 2009;119(12):3626-36. doi: 10.1172/JCI39374. [PubMed: 19884659]. [PubMed Central: PMC2786794].
  • 37. Wang MC, Li CL, Cui J, Jiao M, Wu T, Jing LI, et al. BMI-1, a promising therapeutic target for human cancer. Oncol Lett. 2015;10(2):583-8. doi: 10.3892/ol.2015.3361. [PubMed: 26622537]. [PubMed Central: PMC4509079].
  • 38. Rizo A, Olthof S, Han L, Vellenga E, de Haan G, Schuringa JJ. Repression of BMI1 in normal and leukemic human CD34(+) cells impairs self-renewal and induces apoptosis. Blood. 2009;114(8):1498-505. doi: 10.1182/blood-2009-03-209734. [PubMed: 19556423].
  • 39. Kreso A, van Galen P, Pedley NM, Lima-Fernandes E, Frelin C, Davis T, et al. Self-renewal as a therapeutic target in human colorectal cancer. Nat Med. 2014;20(1):29-36. doi: 10.1038/nm.3418. [PubMed: 24292392].
  • 40. Maadi H, Moshtaghian A, Taha MF, Mowla SJ, Kazeroonian A, Haass NK, et al. Multimodal tumor suppression by miR-302 cluster in melanoma and colon cancer. Int J Biochem Cell Biol. 2016;81(Pt A):121-32. doi: 10.1016/j.biocel.2016.11.004. [PubMed: 27840154].
  • 41. Heydari K, Saidijam M, Sharifi MR, Dermani FK, Soleimani Asl S, Shabab N, et al. The Effect of miR-200c Inhibition on Chemosensitivity (5- FluoroUracil) in Colorectal Cancer. Pathol Oncol Res. 2018;24(1):145-51. doi: 10.1007/s12253-017-0222-6. [PubMed: 28411308].
  • 42. Ganji SM, Saidijam M, Amini R, Mousavi-Bahar SH, Shabab N, Seyedabadi S, et al. Evaluation of MicroRNA-99a and MicroRNA-205 Expression Levels in Bladder Cancer. Int J Mol Cell Med. 2017;6(2):87-95. doi: 10.22088/acadpub.BUMS.6.2.3. [PubMed: 28890885]. [PubMed Central: PMC5581550].
  • 43. Mahdavinezhad A, Mousavi-Bahar SH, Poorolajal J, Yadegarazari R, Jafari M, Shabab N, et al. Evaluation of miR-141, miR-200c, miR-30b Expression and Clinicopathological Features of Bladder Cancer. Int J Mol Cell Med. 2015;4(1):32-9. [PubMed: 25815280]. [PubMed Central: PMC4359703].
  • 44. Khoshinani HM, Afshar S, Pashaki AS, Mahdavinezhad A, Nikzad S, Najafi R, et al. Involvement of miR-155/FOXO3a and miR-222/PTEN in acquired radioresistance of colorectal cancer cell line. Jpn J Radiol. 2017;35(11):664-72. doi: 10.1007/s11604-017-0679-y. [PubMed: 28879560].
  • 45. Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A, Nuovo G, et al. Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res. 2008;68(22):9125-30. doi: 10.1158/0008-5472.CAN-08-2629. [PubMed: 19010882].
  • 46. Zhang H, Li W, Nan F, Ren F, Wang H, Xu Y, et al. MicroRNA expression profile of colon cancer stem-like cells in HT29 adenocarcinoma cell line. Biochem Biophys Res Commun. 2011;404(1):273-8. doi: 10.1016/j.bbrc.2010.11.106. [PubMed: 21130073].
  • 47. Soheilifar MH, Moshtaghian A, Amini R, Asefi M, Basiri P, Saidijam M. BMI1 as a potential target of mir-330-3p in colorectal cancer. Middle East J Rehabil Health. 2018;5(2). doi: 10.5812/mejrh.66075.
  • 48. Bhattacharya R, Nicoloso M, Arvizo R, Wang E, Cortez A, Rossi S, et al. MiR-15a and MiR-16 control Bmi-1 expression in ovarian cancer. Cancer Res. 2009;69(23):9090-5. doi: 10.1158/0008-5472.CAN-09-2552. [PubMed: 19903841]. [PubMed Central: PMC2859686].
  • 49. Sugihara H, Ishimoto T, Watanabe M, Sawayama H, Iwatsuki M, Baba Y, et al. Identification of miR-30e* regulation of Bmi1 expression mediated by tumor-associated macrophages in gastrointestinal cancer. PLoS One. 2013;8(11). e81839. doi: 10.1371/journal.pone.0081839. [PubMed: 24312366]. [PubMed Central: PMC3842972].
  • 50. Dang Z, Xu WH, Lu P, Wu N, Liu J, Ruan B, et al. MicroRNA-135a inhibits cell proliferation by targeting Bmi1 in pancreatic ductal adenocarcinoma. Int J Biol Sci. 2014;10(7):733-45. doi: 10.7150/ijbs.8097. [PubMed: 25013381]. [PubMed Central: PMC4081607].
  • 51. Zhou L, Zhang WG, Wang DS, Tao KS, Song WJ, Dou KF. MicroRNA-183 is involved in cell proliferation, survival and poor prognosis in pancreatic ductal adenocarcinoma by regulating Bmi-1. Oncol Rep. 2014;32(4):1734-40. doi: 10.3892/or.2014.3374. [PubMed: 25109303].
  • 52. Qi X, Li J, Zhou C, Lv C, Tian M. MicroRNA-320a inhibits cell proliferation, migration and invasion by targeting BMI-1 in nasopharyngeal carcinoma. FEBS Lett. 2014;588(20):3732-8. doi: 10.1016/j.febslet.2014.08.021. [PubMed: 25171860].
  • 53. Qiu M, Liang Z, Chen L, Tan G, Wang K, Liu L, et al. MicroRNA-429 suppresses cell proliferation, epithelial-mesenchymal transition, and metastasis by direct targeting of BMI1 and E2F3 in renal cell carcinoma. Urol Oncol. 2015;33(7):332 e9-18. doi: 10.1016/j.urolonc.2015.03.016. [PubMed: 25953723].
  • 54. Peng G, Liao Y, Shen C. miRNA-429 Inhibits Astrocytoma Proliferation and Invasion by Targeting BMI1. Pathol Oncol Res. 2017;23(2):369-76. doi: 10.1007/s12253-016-0113-2. [PubMed: 27663885].
  • 55. Chen W, Zhang B, Guo W, Gao L, Shi L, Li H, et al. miR-429 inhibits glioma invasion through BMK1 suppression. J Neurooncol. 2015;125(1):43-54. doi: 10.1007/s11060-015-1887-x. [PubMed: 26272601].
  • 56. Chang X, Sun Y, Han S, Zhu W, Zhang H, Lian S. MiR-203 inhibits melanoma invasive and proliferative abilities by targeting the polycomb group gene BMI1. Biochem Biophys Res Commun. 2015;456(1):361-6. doi: 10.1016/j.bbrc.2014.11.087. [PubMed: 25475727].
  • 57. Liu S, Tetzlaff MT, Cui R, Xu X. miR-200c inhibits melanoma progression and drug resistance through down-regulation of BMI-1. Am J Pathol. 2012;181(5):1823-35. doi: 10.1016/j.ajpath.2012.07.009. [PubMed: 22982443]. [PubMed Central: PMC3483804].
  • 58. Liu L, Qiu M, Tan G, Liang Z, Qin Y, Chen L, et al. miR-200c inhibits invasion, migration and proliferation of bladder cancer cells through down-regulation of BMI-1 and E2F3. J Transl Med. 2014;12:305. doi: 10.1186/s12967-014-0305-z. [PubMed: 25367080]. [PubMed Central: PMC4226852].
  • 59. Kopp F, Oak PS, Wagner E, Roidl A. miR-200c sensitizes breast cancer cells to doxorubicin treatment by decreasing TrkB and Bmi1 expression. PLoS One. 2012;7(11). e50469. doi: 10.1371/journal.pone.0050469. [PubMed: 23209748]. [PubMed Central: PMC3510180].
  • 60. Luo H, Yang R, Li C, Tong Y, Fan L, Liu X, et al. MicroRNA-139-5p inhibits bladder cancer proliferation and self-renewal by targeting the Bmi1 oncogene. Tumour Biol. 2017;39(7):1.0104283177184E+15. doi: 10.1177/1010428317718414. [PubMed: 28720065].
  • 61. Sun L, Yao Y, Liu B, Lin Z, Lin L, Yang M, et al. MiR-200b and miR-15b regulate chemotherapy-induced epithelial-mesenchymal transition in human tongue cancer cells by targeting BMI1. Oncogene. 2012;31(4):432-45. doi: 10.1038/onc.2011.263. [PubMed: 21725369].
  • 62. He X, Dong Y, Wu CW, Zhao Z, Ng SS, Chan FK, et al. MicroRNA-218 inhibits cell cycle progression and promotes apoptosis in colon cancer by downregulating BMI1 polycomb ring finger oncogene. Mol Med. 2013;18:1491-8. doi: 10.2119/molmed.2012.00304. [PubMed: 23255074]. [PubMed Central: PMC3576472].
  • 63. Ren L, Chen HY, Hong J, Fang JY. A master microRNA miR-508-3p modulates the mesenchymal subtype of colorectal cancer by targeting ZEB1/BMI1/SALL4 network. Clin Gastroenterol H. 2015;13(7). e81. doi: 10.1016/j.cgh.2015.04.058.
  • 64. Weng JH, Yu CC, Lee YC, Lin CW, Chang WW, Kuo YL. miR-494-3p induces cellular senescence and enhances radiosensitivity in human oral squamous carcinoma cells. Int J Mol Sci. 2016;17(7). doi: 10.3390/ijms17071092. [PubMed: 27399693]. [PubMed Central: PMC4964468].
  • 65. Xi S, Xu H, Shan J, Tao Y, Hong JA, Inchauste S, et al. Cigarette smoke mediates epigenetic repression of miR-487b during pulmonary carcinogenesis. J Clin Invest. 2013;123(3):1241-61. doi: 10.1172/JCI61271. [PubMed: 23426183]. [PubMed Central: PMC3582115].
  • 66. Colussi D, Brandi G, Bazzoli F, Ricciardiello L. Molecular pathways involved in colorectal cancer: implications for disease behavior and prevention. Int J Mol Sci. 2013;14(8):16365-85. doi: 10.3390/ijms140816365. [PubMed: 23965959]. [PubMed Central: PMC3759916].
  • 67. Li X, Zheng X, Xu B, Zhang D, Xu Y, Xie Q, et al. Lower Bmi-1 Expression May Predict Longer Survival of Colon Cancer Patients. Cell Physiol Biochem. 2016;39(6):2421-6. doi: 10.1159/000452510. [PubMed: 27855398].
  • 68. Espersen ML, Linnemann D, Christensen IJ, Alamili M, Troelsen JT, Hogdall E. The prognostic value of polycomb group protein B-cell-specific moloney murine leukemia virus insertion site 1 in stage II colon cancer patients. APMIS. 2016;124(7):541-6. doi: 10.1111/apm.12539. [PubMed: 27102362].
  • 69. Zhang X, Yang X, Zhang Y, Liu X, Zheng G, Yang Y, et al. Direct serum assay for cell-free bmi-1 mRNA and its potential diagnostic and prognostic value for colorectal cancer. Clin Cancer Res. 2015;21(5):1225-33. doi: 10.1158/1078-0432.CCR-14-1761. [PubMed: 25547677].
  • 70. Li DW, Tang HM, Fan JW, Yan DW, Zhou CZ, Li SX, et al. Expression level of Bmi-1 oncoprotein is associated with progression and prognosis in colon cancer. J Cancer Res Clin Oncol. 2010;136(7):997-1006. doi: 10.1007/s00432-009-0745-7. [PubMed: 20024662].
  • 71. Alajez NM. Significance of BMI1 and FSCN1 expression in colorectal cancer. Saudi J Gastroenterol. 2016;22(4):288-93. doi: 10.4103/1319-3767.187602. [PubMed: 27488323]. [PubMed Central: PMC4991199].
  • 72. O'Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445(7123):106-10. doi: 10.1038/nature05372. [PubMed: 17122772].
  • 73. Zeuner A, Todaro M, Stassi G, De Maria R. Colorectal cancer stem cells: from the crypt to the clinic. Cell Stem Cell. 2014;15(6):692-705. doi: 10.1016/j.stem.2014.11.012. [PubMed: 25479747].
  • 74. Yu T, Chen X, Zhang W, Colon D, Shi J, Napier D, et al. Regulation of the potential marker for intestinal cells, Bmi1, by beta-catenin and the zinc finger protein KLF4: implications for colon cancer. J Biol Chem. 2012;287(6):3760-8. doi: 10.1074/jbc.M111.316349. [PubMed: 22170051]. [PubMed Central: PMC3281718].
  • 75. Chen D, Wu M, Li Y, Chang I, Yuan Q, Ekimyan-Salvo M, et al. Targeting BMI1(+) Cancer Stem Cells Overcomes Chemoresistance and Inhibits Metastases in Squamous Cell Carcinoma. Cell Stem Cell. 2017;20(5):621-634 e6. doi: 10.1016/j.stem.2017.02.003. [PubMed: 28285905]. [PubMed Central: PMC5419860].
  • 76. Scholch S, Garcia SA, Iwata N, Niemietz T, Betzler AM, Nanduri LK, et al. Circulating tumor cells exhibit stem cell characteristics in an orthotopic mouse model of colorectal cancer. Oncotarget. 2016;7(19):27232-42. doi: 10.18632/oncotarget.8373. [PubMed: 27029058]. [PubMed Central: PMC5053645].
  • 77. Li Y, Wang L, Pappan L, Galliher-Beckley A, Shi J. IL-1beta promotes stemness and invasiveness of colon cancer cells through Zeb1 activation. Mol Cancer. 2012;11:87. doi: 10.1186/1476-4598-11-87. [PubMed: 23174018]. [PubMed Central: PMC3532073].
  • 78. Gao F, Huang W, Zhang Y, Tang S, Zheng L, Ma F, et al. Hes1 promotes cell proliferation and migration by activating Bmi-1 and PTEN/Akt/GSK3beta pathway in human colon cancer. Oncotarget. 2015;6(36):38667-80. doi: 10.18632/oncotarget.5484. [PubMed: 26452029]. [PubMed Central: PMC4770728].
  • 79. Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell. 2014;14(3):275-91. doi: 10.1016/j.stem.2014.02.006. [PubMed: 24607403].
  • 80. Chen J, Wang Y, Zhuo L, Liu Z, Liu T, Li W, et al. Fas signaling induces stemness properties in colorectal cancer by regulation of Bmi1. Mol Carcinog. 2017;56(10). doi: 10.1002/mc.22680. [PubMed: 28543447].
  • 81. Jones MF, Hara T, Francis P, Li XL, Bilke S, Zhu Y, et al. The CDX1-microRNA-215 axis regulates colorectal cancer stem cell differentiation. Proc Natl Acad Sci U S A. 2015;112(13):E1550-8. doi: 10.1073/pnas.1503370112. [PubMed: 25775580]. [PubMed Central: PMC4386393].
  • 82. Domon-Dell C, Schneider A, Moucadel V, Guerin E, Guenot D, Aguillon S, et al. Cdx1 homeobox gene during human colon cancer progression. Oncogene. 2003;22(39):7913-21. doi: 10.1038/sj.onc.1206756. [PubMed: 12970739].
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments