International Journal of Cancer Management

Published by: Kowsar

The Molecular Mechanisms of Tobacco in Cancer Pathogenesis

Elaheh Nooshinfar 1 , 2 , Davood Bashash 3 , * , Mahnaz Abbasalizadeh 3 , Ava Safaroghli-Azar 3 , Parisa Sadreazami 3 and Mohammad Esmaeil Akbari 1
Authors Information
1 Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2 Department of Basic Sciences, Faculty of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3 Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Article information
  • Iranian Journal of Cancer Prevention: January 2017, 10 (1); e7902
  • Published Online: January 24, 2017
  • Article Type: Review Article
  • Received: July 17, 2016
  • Revised: October 26, 2016
  • Accepted: January 14, 2017
  • DOI: 10.17795/ijcp-7902

To Cite: Nooshinfar E, Bashash D, Abbasalizadeh M, Safaroghli-Azar A, Sadreazami P, et al. The Molecular Mechanisms of Tobacco in Cancer Pathogenesis, Int J Cancer Manag. 2017 ; 10(1):e7902. doi: 10.17795/ijcp-7902.

Abstract
Copyright © 2017, Iranian Journal of Cancer Prevention. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Context
2. Evidence Acquisition
3. Results
4. Conclusions
Acknowledgements
Footnotes
References
  • 1. Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004; 10(8): 789-99[DOI][PubMed]
  • 2. Anand P, Kunnumakkara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, et al. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res. 2008; 25(9): 2097-116[DOI][PubMed]
  • 3. Sonnenschein C, Soto AM. Theories of carcinogenesis: an emerging perspective. Semin Cancer Biol. 2008; 18(5): 372-7[DOI][PubMed]
  • 4. Groenewald P, Vos T, Norman R, Laubscher R, van Walbeek C, Saloojee Y, et al. Estimating the burden of disease attributable to smoking in South Africa in 2000. S Afr Med J. 2007; 97(8 Pt 2): 674-81[PubMed]
  • 5. Lopez MJ, Perez-Rios M, Schiaffino A, Nebot M, Montes A, Ariza C, et al. Mortality attributable to passive smoking in Spain, 2002. Tob Control. 2007; 16(6): 373-7[DOI][PubMed]
  • 6. Health UD, Services H. The health consequences of smoking: a report of the Surgeon General 2004;
  • 7. Pfeifer GP, Denissenko MF, Olivier M, Tretyakova N, Hecht SS, Hainaut P. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene. 2002; 21(48): 7435-51[DOI][PubMed]
  • 8. Humans IWG. Cancer, Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures 2010;
  • 9. Cogliano VJ, Baan R, Straif K, Grosse Y, Lauby-Secretan B, El Ghissassi F, et al. Preventable exposures associated with human cancers. J Natl Cancer Inst. 2011; 103(24): 1827-39[DOI][PubMed]
  • 10. Hecht SS. Cigarette smoking: cancer risks, carcinogens, and mechanisms. Langenbecks Arch Surg. 2006; 391(6): 603-13[DOI][PubMed]
  • 11. Ghaffari SH, Momeny M, Bashash D, Mirzaei R, Ghavamzadeh A, Alimoghaddam K. Cytotoxic effect of arsenic trioxide on acute promyelocytic leukemia cells through suppression of NFkbeta-dependent induction of hTERT due to down-regulation of Pin1 transcription. Hematology. 2012; 17(4): 198-206[DOI][PubMed]
  • 12. Huncharek M, Kupelnick B, Klassen H. Maternal smoking during pregnancy and the risk of childhood brain tumors: a meta-analysis of 6566 subjects from twelve epidemiological studies. J Neurooncol. 2002; 57(1): 51-7[DOI][PubMed]
  • 13. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006; 3(11): 442[DOI][PubMed]
  • 14. Hecht SS. Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst. 1999; 91(14): 1194-210[DOI][PubMed]
  • 15. Song N, Tan W, Xing D, Lin D. CYP 1A1 polymorphism and risk of lung cancer in relation to tobacco smoking: a case-control study in China. Carcinogenesis. 2001; 22(1): 11-6[DOI][PubMed]
  • 16. Gutschner T, Diederichs S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol. 2012; 9(6): 703-19[DOI][PubMed]
  • 17. Moolgavkar SH, Venzon DJ. Two-event models for carcinogenesis: incidence curves for childhood and adult tumors. Mathematical Biosciences. 1979; 47(1): 55-77[DOI]
  • 18. Sutandyo N. Nutritional carcinogenesis. Acta Med Indones. 2010; 42(1): 36-42[PubMed]
  • 19. Sugimura T. Nutrition and dietary carcinogens. Carcinogenesis. 2000; 21(3): 387-95[PubMed]
  • 20. Gao WM, Mady HH, Yu GY, Siegfried JM, Luketich JD, Melhem MF. Comparison of p53 mutations between adenocarcinoma and squamous cell carcinoma of the lung: unique spectra involving G to A transitions and G to T transversions in both histologic types. Lung Cancer. 2003; 40(2): 141-50[DOI]
  • 21. Mohammadi A, Gohar AV, Shakibaie MR. Mutations in tumor suppressor TP53 gene in formalin-fixed, paraffin embedded tissues of squamous cell carcinoma (SCC) of lung cancer. Am J Biochem Biotech. 2008; 4: 1-6[DOI]
  • 22. Stern MC, Umbach DM, Lunn RM, Taylor JA. DNA repair gene XRCC3 codon 241 polymorphism, its interaction with smoking and XRCC1 polymorphisms, and bladder cancer risk. Cancer Epidemiol Biomarkers Prev. 2002; 11(9): 939-43[PubMed]
  • 23. Vandooren J, Van den Steen PE, Opdenakker G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): the next decade. Crit Rev Biochem Mol Biol. 2013; 48(3): 222-72[DOI][PubMed]
  • 24. Vairaktaris E, Vassiliou S, Nkenke E, Serefoglou Z, Derka S, Tsigris C, et al. A metalloproteinase-9 polymorphism which affects its expression is associated with increased risk for oral squamous cell carcinoma. Eur J Surg Oncol. 2008; 34(4): 450-5[DOI][PubMed]
  • 25. Hubner RH, Meffert S, Mundt U, Bottcher H, Freitag S, El Mokhtari NE, et al. Matrix metalloproteinase-9 in bronchiolitis obliterans syndrome after lung transplantation. Eur Respir J. 2005; 25(3): 494-501[DOI][PubMed]
  • 26. Fanjul-Fernandez M, Folgueras AR, Cabrera S, Lopez-Otin C. Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochim Biophys Acta. 2010; 1803(1): 3-19[DOI][PubMed]
  • 27. Ghaffari S, Pourafkari L, Javadzadegan H, Masoumi N, Jafarabadi MA, Nader ND. Mean platelet volume is a predictor of ST resolution following thrombolysis in acute ST elevation myocardial infarction. Thromb Res. 2015; 136(1): 101-6[DOI][PubMed]
  • 28. Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010; 31(1): 27-36[DOI][PubMed]
  • 29. Kanwal R, Gupta S. Epigenetics and cancer. J Appl Physiol (1985). 2010; 109(2): 598-605[DOI][PubMed]
  • 30. Aran D, Toperoff G, Rosenberg M, Hellman A. Replication timing-related and gene body-specific methylation of active human genes. Hum Mol Genet. 2011; 20(4): 670-80[DOI][PubMed]
  • 31. Besingi W, Johansson A. Smoke-related DNA methylation changes in the etiology of human disease. Hum Mol Genet. 2014; 23(9): 2290-7[DOI][PubMed]
  • 32. Ma YT, Collins SI, Young LS, Murray PG, Woodman CB. Smoking initiation is followed by the early acquisition of epigenetic change in cervical epithelium: a longitudinal study. Br J Cancer. 2011; 104(9): 1500-4[DOI][PubMed]
  • 33. Momi N, Kaur S, Rachagani S, Ganti AK, Batra SK. Smoking and microRNA dysregulation: a cancerous combination. Trends Mol Med. 2014; 20(1): 36-47[DOI][PubMed]
  • 34. Schuller HM, Plummer HK 3rd, Jull BA. Receptor-mediated effects of nicotine and its nitrosated derivative NNK on pulmonary neuroendocrine cells. Anat Rec A Discov Mol Cell Evol Biol. 2003; 270(1): 51-8[DOI][PubMed]
  • 35. Wong HP, Yu L, Lam EK, Tai EK, Wu WK, Cho CH. Nicotine promotes colon tumor growth and angiogenesis through beta-adrenergic activation. Toxicol Sci. 2007; 97(2): 279-87[DOI][PubMed]
  • 36. Laag E, Majidi M, Cekanova M, Masi T, Takahashi T, Schuller HM. NNK activates ERK1/2 and CREB/ATF-1 via beta-1-AR and EGFR signaling in human lung adenocarcinoma and small airway epithelial cells. Int J Cancer. 2006; 119(7): 1547-52[DOI][PubMed]
  • 37. Lam DC, Girard L, Ramirez R, Chau WS, Suen WS, Sheridan S, et al. Expression of nicotinic acetylcholine receptor subunit genes in non-small-cell lung cancer reveals differences between smokers and nonsmokers. Cancer Res. 2007; 67(10): 4638-47[DOI][PubMed]
  • 38. Gotti C, Clementi F. Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol. 2004; 74(6): 363-96[DOI][PubMed]
  • 39. Catassi A, Servent D, Paleari L, Cesario A, Russo P. Multiple roles of nicotine on cell proliferation and inhibition of apoptosis: implications on lung carcinogenesis. Mutat Res. 2008; 659(3): 221-31[DOI][PubMed]
  • 40. Xu XC. Risk factors and gene expression in esophageal cancer. Methods Mol Biol. 2009; 471: 335-60[DOI][PubMed]
  • 41. Chen RJ, Chang LW, Lin P, Wang YJ. Epigenetic effects and molecular mechanisms of tumorigenesis induced by cigarette smoke: an overview. J Oncol. 2011; 2011: 654931[DOI][PubMed]
  • 42. Bashash D, Ghaffari SH, Mirzaee R, Alimoghaddam K, Ghavamzadeh A. Telomerase inhibition by non-nucleosidic compound BIBR1532 causes rapid cell death in pre-B acute lymphoblastic leukemia cells. Leuk Lymphoma. 2013; 54(3): 561-8[DOI][PubMed]
  • 43. Bashash D, Ghaffari SH, Zaker F, Hezave K, Kazerani M, Ghavamzadeh A, et al. Direct short-term cytotoxic effects of BIBR 1532 on acute promyelocytic leukemia cells through induction of p21 coupled with downregulation of c-Myc and hTERT transcription. Cancer Invest. 2012; 30(1): 57-64[DOI][PubMed]
  • 44. Yim HW, Slebos RJ, Randell SH, Umbach DM, Parsons AM, Rivera MP, et al. Smoking is associated with increased telomerase activity in short-term cultures of human bronchial epithelial cells. Cancer Lett. 2007; 246(1-2): 24-33[DOI][PubMed]
  • 45. Chen RJ, Ho YS, Guo HR, Wang YJ. Rapid activation of Stat3 and ERK1/2 by nicotine modulates cell proliferation in human bladder cancer cells. Toxicol Sci. 2008; 104(2): 283-93[DOI][PubMed]
  • 46. Tsurutani J, Castillo SS, Brognard J, Granville CA, Zhang C, Gills JJ, et al. Tobacco components stimulate Akt-dependent proliferation and NFkappaB-dependent survival in lung cancer cells. Carcinogenesis. 2005; 26(7): 1182-95[DOI][PubMed]
  • 47. Charlesworth JC, Curran JE, Johnson MP, Goring HH, Dyer TD, Diego VP, et al. Transcriptomic epidemiology of smoking: the effect of smoking on gene expression in lymphocytes. BMC Med Genomics. 2010; 3: 29[DOI][PubMed]
  • 48. Cooke JP, Bitterman H. Nicotine and angiogenesis: a new paradigm for tobacco-related diseases. Ann Med. 2004; 36(1): 33-40[DOI][PubMed]
  • 49. Egleton RD, Brown KC, Dasgupta P. Angiogenic activity of nicotinic acetylcholine receptors: implications in tobacco-related vascular diseases. Pharmacol Ther. 2009; 121(2): 205-23[DOI][PubMed]
  • 50. Martinez-Garcia E, Irigoyen M, Gonzalez-Moreno O, Corrales L, Teijeira A, Salvo E, et al. Repetitive nicotine exposure leads to a more malignant and metastasis-prone phenotype of SCLC: a molecular insight into the importance of quitting smoking during treatment. Toxicol Sci. 2010; 116(2): 467-76[DOI][PubMed]
  • 51. Puliyappadamba VT, Cheriyan VT, Thulasidasan AK, Bava SV, Vinod BS, Prabhu PR, et al. Nicotine-induced survival signaling in lung cancer cells is dependent on their p53 status while its down-regulation by curcumin is independent. Mol Cancer. 2010; 9: 220[DOI][PubMed]
  • 52. Schuller HM, Al-Wadei HA, Majidi M. GABA B receptor is a novel drug target for pancreatic cancer. Cancer. 2008; 112(4): 767-78[DOI][PubMed]
  • 53. Sauter W, Rosenberger A, Beckmann L, Kropp S, Mittelstrass K, Timofeeva M, et al. Matrix metalloproteinase 1 (MMP1) is associated with early-onset lung cancer. Cancer Epidemiol Biomarkers Prev. 2008; 17(5): 1127-35[DOI][PubMed]
  • 54. Nisa H, Kono S, Yin G, Toyomura K, Nagano J, Mibu R, et al. Cigarette smoking, genetic polymorphisms and colorectal cancer risk: the Fukuoka Colorectal Cancer Study. BMC Cancer. 2010; 10: 274[DOI][PubMed]
  • 55. Shah PP, Saurabh K, Pant MC, Mathur N, Parmar D. Evidence for increased cytochrome P450 1A1 expression in blood lymphocytes of lung cancer patients. Mutat Res. 2009; 670(1-2): 74-8[DOI][PubMed]
  • 56. Ghavam MR, Nasiri N Aminisani NN, SM Shamshirgaran SM. Direct and indirect effects of smoking on breast cancer. Babol Med J. 2004; 7(1): 63-8
  • 57. Knowles MA, Hurst CD. Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat Rev Cancer. 2015; 15(1): 25-41[DOI][PubMed]
  • 58. Li S, Peng Q, Chen Y, You J, Chen Z, Deng Y, et al. DNA repair gene XRCC1 polymorphisms, smoking, and bladder cancer risk: a meta-analysis. PLoS One. 2013; 8(9): 73448[DOI][PubMed]
  • 59. Stern MC, Umbach DM, van Gils CH, Lunn RM, Taylor JA. DNA repair gene XRCC1 polymorphisms, smoking, and bladder cancer risk. Cancer Epidemiol Biomarkers Prev. 2001; 10(2): 125-31[PubMed]
  • 60. Saletta F, Matullo G, Manuguerra M, Arena S, Bardelli A, Vineis P. Exposure to the tobacco smoke constituent 4-aminobiphenyl induces chromosomal instability in human cancer cells. Cancer Res. 2007; 67(15): 7088-94[DOI][PubMed]
  • 61. Chen RJ. Molecular mechanisms of nicotine-induced bladder cancer. J Experiment Clin Med. 2011; 3(6): 252-6[DOI]
  • 62. Bjartveit K, Tverdal A. Health consequences of smoking 1-4 cigarettes per day. Tob Control. 2005; 14(5): 315-20[DOI][PubMed]
  • 63. Yilmaz G, Hizli S, Karacan C, Yurdakok K, Coskun T, Dilmen U. Effect of passive smoking on growth and infection rates of breast-fed and non-breast-fed infants. Pediatr Int. 2009; 51(3): 352-8[DOI][PubMed]
  • 64. Jensen K, Afroze S, Munshi MK, Guerrier M, Glaser SS. Mechanisms for nicotine in the development and progression of gastrointestinal cancers. Transl Gastrointest Cancer. 2012; 1(1): 81-7[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments