International Journal of Cancer Management

Published by: Kowsar

Anti-Proliferative Effects of Piroxicam and Nimesulide on A431 Human Squamous Carcinoma Cell Line

Faezeh Khodaie 1 , Yalda Khazaei-Poul 1 and Taraneh Moini-Zanjani 1 , *
Authors Information
1 Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
Article information
  • International Journal of Cancer Management: April 2017, 10 (4); e7565
  • Published Online: April 22, 2017
  • Article Type: Research Article
  • Received: June 15, 2016
  • Accepted: March 8, 2017
  • DOI: 10.5812/ijcm.7565

To Cite: Khodaie F, Khazaei-Poul Y, Moini-Zanjani T. Anti-Proliferative Effects of Piroxicam and Nimesulide on A431 Human Squamous Carcinoma Cell Line, Int J Cancer Manag. 2017 ; 10(4):e7565. doi: 10.5812/ijcm.7565.

Abstract
Copyright © 2017, International Journal of Cancer Management. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Karia PS, Han J, Schmults CD. Cutaneous squamous cell carcinoma: estimated incidence of disease, nodal metastasis, and deaths from disease in the United States, 2012. J Am Acad Dermatol. 2013; 68(6): 957-66[DOI][PubMed]
  • 2. Christenson LJ, Borrowman TA, Vachon CM, Tollefson MM, Otley CC, Weaver AL, et al. Incidence of basal cell and squamous cell carcinomas in a population younger than 40 years. JAMA. 2005; 294(6): 681-90[DOI][PubMed]
  • 3. Basra MK, Shahrukh M. Burden of skin diseases. Expert Rev Pharmacoecon Outcomes Res. 2009; 9(3): 271-83[DOI][PubMed]
  • 4. Rudnick EW, Thareja S, Cherpelis B. Oral therapy for nonmelanoma skin cancer in patients with advanced disease and large tumor burden: a review of the literature with focus on a new generation of targeted therapies. Int J Dermatol. 2016; 55(3): 249-58[DOI][PubMed]
  • 5. Soura E, Chasapi V, Stratigos AJ. Pharmacologic treatment options for advanced epithelial skin cancer. Expert Opin Pharmacother. 2015; 16(10): 1479-93[DOI][PubMed]
  • 6. Peiris-Pages M, Sotgia F, Lisanti MP. Doxycycline and therapeutic targeting of the DNA damage response in cancer cells: old drug, new purpose. Oncoscience. 2015; 2(8): 696-9[DOI][PubMed]
  • 7. Yadav V, Varshney P, Sultana S, Yadav J, Saini N. Moxifloxacin and ciprofloxacin induces S-phase arrest and augments apoptotic effects of cisplatin in human pancreatic cancer cells via ERK activation. BMC Cancer. 2015; 15: 581[DOI][PubMed]
  • 8. dela Cruz JF, Kim YS, Lumbera WM, Hwang SG. Viscum Album Var Hot Water Extract Mediates Anti-cancer Effects through G1 Phase Cell Cycle Arrest in SK-Hep1 Human Hepatocarcinoma cells. Asian Pac J Cancer Prev. 2015; 16(15): 6417-21[PubMed]
  • 9. Esmaeilbeig M, Kouhpayeh SA, Amirghofran Z. An Investigation of the Growth Inhibitory Capacity of Several Medicinal Plants From Iran on Tumor Cell Lines. Iran J Cancer Prev. 2015; 8(5)[DOI][PubMed]
  • 10. Reinau D, Surber C, Jick SS, Meier CR. Nonsteroidal anti-inflammatory drugs and the risk of nonmelanoma skin cancer. Int J Cancer. 2015; 137(1): 144-53[DOI][PubMed]
  • 11. Buckman SY, Gresham A, Hale P, Hruza G, Anast J, Masferrer J, et al. COX-2 expression is induced by UVB exposure in human skin: implications for the development of skin cancer. Carcinogenesis. 1998; 19(5): 723-9[PubMed]
  • 12. Vane JR, Bakhle YS, Botting RM. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol. 1998; 38: 97-120[DOI][PubMed]
  • 13. Rai N, Sarkar M, Raha S. Piroxicam, a traditional non-steroidal anti-inflammatory drug (NSAID) causes apoptosis by ROS mediated Akt activation. Pharmacol Rep. 2015; 67(6): 1215-23[DOI][PubMed]
  • 14. Rosas C, Sinning M, Ferreira A, Fuenzalida M, Lemus D. Celecoxib decreases growth and angiogenesis and promotes apoptosis in a tumor cell line resistant to chemotherapy. Biol Res. 2014; 47: 27[DOI][PubMed]
  • 15. Mohammed SI, Dhawan D, Abraham S, Snyder PW, Waters DJ, Craig BA, et al. Cyclooxygenase inhibitors in urinary bladder cancer: in vitro and in vivo effects. Mol Cancer Ther. 2006; 5(2): 329-36[DOI][PubMed]
  • 16. Chiu LC, Tong KF, Ooi VE. Cytostatic and cytotoxic effects of cyclooxygenase inhibitors and their synergy with docosahexaenoic acid on the growth of human skin melanoma A-375 cells. Biomed Pharmacother. 2005; 59 Suppl 2-7[PubMed]
  • 17. Yeh RK, Chen J, Williams JL, Baluch M, Hundley TR, Rosenbaum RE, et al. NO-donating nonsteroidal antiinflammatory drugs (NSAIDs) inhibit colon cancer cell growth more potently than traditional NSAIDs: a general pharmacological property? Biochem Pharmacol. 2004; 67(12): 2197-205[DOI][PubMed]
  • 18. Kim SH, Kim SH, Song YC, Song YS. Celecoxib potentiates the anticancer effect of cisplatin on vulvar cancer cells independently of cyclooxygenase. Ann N Y Acad Sci. 2009; 1171: 635-41[DOI][PubMed]
  • 19. Chattopadhyay M, Kodela R, Nath N, Dastagirzada YM, Velazquez-Martinez CA, Boring D, et al. Hydrogen sulfide-releasing NSAIDs inhibit the growth of human cancer cells: a general property and evidence of a tissue type-independent effect. Biochem Pharmacol. 2012; 83(6): 715-22[DOI][PubMed]
  • 20. Baek SJ, McEntee MF, Legendre AM. Review paper: Cancer chemopreventive compounds and canine cancer. Vet Pathol. 2009; 46(4): 576-88[DOI][PubMed]
  • 21. Pelzmann M, Thurnher D, Gedlicka C, Martinek H, Knerer B. Nimesulide and indomethacin induce apoptosis in head and neck cancer cells. J Oral Pathol Med. 2004; 33(10): 607-13[DOI][PubMed]
  • 22. Fang HM, Mei Q, Xu JM, Ma WJ. 5-aminosalicylic acid in combination with nimesulide inhibits proliferation of colon carcinoma cells in vitro. World J Gastroenterol. 2007; 13(20): 2872-7[PubMed]
  • 23. Eibl G, Reber HA, Wente MN, Hines OJ. The selective cyclooxygenase-2 inhibitor nimesulide induces apoptosis in pancreatic cancer cells independent of COX-2. Pancreas. 2003; 26(1): 33-41[PubMed]
  • 24. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983; 65(1-2): 55-63[PubMed]
  • 25. Environmental effects of ozone depletion and its interactions with climate change: progress report. 2015;
  • 26. Bishop-Bailey D, Calatayud S, Warner TD, Hla T, Mitchell JA. Prostaglandins and the regulation of tumor growth. J Environ Pathol Toxicol Oncol. 2002; 21(2): 93-101[PubMed]
  • 27. Jeong HS, Kim JH, Choi HY, Lee ER, Cho SG. Induction of cell growth arrest and apoptotic cell death in human breast cancer MCF-7 cells by the COX-1 inhibitor FR122047. Oncol Rep. 2010; 24(2): 351-6[PubMed]
  • 28. Kirschenbaum A, Klausner AP, Lee R, Unger P, Yao S, Liu XH, et al. Expression of cyclooxygenase-1 and cyclooxygenase-2 in the human prostate. Urology. 2000; 56(4): 671-6[PubMed]
  • 29. Sales K. J. , Katz A. A. , Howard B. , Soeters R. P. , Millar R. P. , Jabbour H. N. . Cyclooxygenase-1 is up-regulated in cervical carcinomas: autocrine/paracrine regulation of cyclooxygenase-2, prostaglandin e receptors, and angiogenic factors by cyclooxygenase-1. Cancer Res. 2002; 62(2): 424-32
  • 30. Liu B, Qu L, Yan S. Cyclooxygenase-2 promotes tumor growth and suppresses tumor immunity. Cancer Cell Int. 2015; 15: 106[DOI][PubMed]
  • 31. Kase S, Osaki M, Honjo S, Hashimoto K, Adachi H, Tsujitani S, et al. Expression of cyclooxygenase-1 and cyclooxygenase-2 in human esophageal mucosa, dysplasia and carcinoma. Pathobiology. 2004; 71(2): 84-92[DOI][PubMed]
  • 32. Rayburn ER, Ezell SJ, Zhang R. Anti-Inflammatory Agents for Cancer Therapy. Mol Cell Pharmacol. 2009; 1(1): 29-43[DOI][PubMed]
  • 33. Bichel J. Phenylbutazone (butazolidin) in the treatment of Hodgkin's disease. Acta Med Scand. 1956; 153(4): 293-8[PubMed]
  • 34. Emich R. Clinical experience with butazolidin in neoplastic processes. Wiener medizinische Wochenschrift. 1955; 105(18): 371-2
  • 35. Khan Z, Khan N, Tiwari RP, Sah NK, Prasad GB, Bisen PS. Biology of Cox-2: an application in cancer therapeutics. Curr Drug Targets. 2011; 12(7): 1082-93[PubMed]
  • 36. Hashitani S, Urade M, Nishimura N, Maeda T, Takaoka K, Noguchi K, et al. Apoptosis induction and enhancement of cytotoxicity of anticancer drugs by celecoxib, a selective cyclooxygenase-2 inhibitor, in human head and neck carcinoma cell lines. Int J Oncol. 2003; 23(3): 665-72[PubMed]
  • 37. Thun MJ, Henley SJ, Patrono C. Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst. 2002; 94(4): 252-66[PubMed]
  • 38. Wang D, Dubois RN. Prostaglandins and cancer. Gut. 2006; 55(1): 115-22[DOI][PubMed]
  • 39. Tang JY, Aszterbaum M, Athar M, Barsanti F, Cappola C, Estevez N, et al. Basal cell carcinoma chemoprevention with nonsteroidal anti-inflammatory drugs in genetically predisposed PTCH1+/- humans and mice. Cancer Prev Res (Phila). 2010; 3(1): 25-34[DOI][PubMed]
  • 40. Agarwal S, Achari C, Praveen D, Roy KR, Reddy GV, Reddanna P. Inhibition of 12-LOX and COX-2 reduces the proliferation of human epidermoid carcinoma cells (A431) by modulating the ERK and PI3K-Akt signalling pathways. Exp Dermatol. 2009; 18(11): 939-46[DOI][PubMed]
  • 41. Arumugam A, Weng Z, Talwelkar SS, Chaudhary SC, Kopelovich L, Elmets CA, et al. Inhibiting cycloxygenase and ornithine decarboxylase by diclofenac and alpha-difluoromethylornithine blocks cutaneous SCCs by targeting Akt-ERK axis. PLoS One. 2013; 8(11)[DOI][PubMed]
  • 42. Cheng KW, Mattheolabakis G, Wong CC, Ouyang N, Huang L, Constantinides PP, et al. Topical phospho-sulindac (OXT-328) is effective in the treatment of non-melanoma skin cancer. Int J Oncol. 2012; 41(4): 1199-203[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments