International Journal of Cancer Management

Published by: Kowsar

Application of a Mixture Cure Fraction Model Based on the Generalized Modified Weibull Distribution for Analyzing Survival of Patients with Breast Cancer

Parisa Naseri 1 , Ahmad Reza Baghestani 1 , Narges Momenyan 2 , * and Mohammad Esmaeil Akbari 3
Authors Information
1 Department of Biostatistics, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
2 Department of Medical Informatics, Tarbiat Modares University, Tehran, IR Iran
3 Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
Article information
  • International Journal of Cancer Management: May 2018, 11 (5); e62863
  • Published Online: May 14, 2018
  • Article Type: Research Article
  • Received: October 20, 2017
  • Revised: February 17, 2018
  • Accepted: February 22, 2018
  • DOI: 10.5812/ijcm.62863

To Cite: Naseri P, Baghestani A R, Momenyan N, Esmaeil Akbari M. Application of a Mixture Cure Fraction Model Based on the Generalized Modified Weibull Distribution for Analyzing Survival of Patients with Breast Cancer, Int J Cancer Manag. 2018 ; 11(5):e62863. doi: 10.5812/ijcm.62863.

Abstract
Copyright © 2018, Cancer Research Center (CRC), Shahid Beheshti University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Methods
3. Results
4. Discussion
5. Conclusions
Acknowledgements
Footnotes
References
  • 1. Garcia-Laencina PJ, Abreu PH, Abreu MH, Afonoso N. Missing data imputation on the 5-year survival prediction of breast cancer patients with unknown discrete values. Comput Biol Med. 2015;59:125-33. doi: 10.1016/j.compbiomed.2015.02.006. [PubMed: 25725446].
  • 2. Grau AM, Ata A, Foster L, Ahmed NU, Gorman DR, Shyr Y, et al. Effect of race on long-term survival of breast cancer patients: transinstitutional analysis from an inner city hospital and university medical center. Am Surg. 2005;71(2):164-70. [PubMed: 16022018].
  • 3. Foo CS, Su D, Chong CK, Chng HC, Tay KH, Low SC, et al. Breast cancer in young Asian women: study on survival. ANZ J Surg. 2005;75(7):566-72. doi: 10.1111/j.1445-2197.2005.03431.x. [PubMed: 15972049].
  • 4. Baghestani AR, Moghaddam SS, Majd HA, Akbari ME, Nafissi N, Gohari K. Application of a Non-Mixture Cure Rate Model for Analyzing Survival of Patients with Breast Cancer. Asian Pac J Cancer Prev. 2015;16(16):7359-63. [PubMed: 26514537].
  • 5. Momenyan S, Baghestani AR, Momenyan N, Naseri P, et al. Survival prediction of patients with breast cancer: comparisons of decision tree and logistic regression analysis. Int J Cancer Manag. 2018. Forthcoming. e9176.
  • 6. Haghshenas MR, Mousavi T, Moosazadeh M, Afshari M. Human papillomavirus and breast cancer in Iran: a meta- analysis. Iran J Basic Med Sci. 2016;19(3):231-7. [PubMed: 27114791]. [PubMed Central: PMC4834111].
  • 7. Bundred NJ. Prognostic and predictive factors in breast cancer. Cancer Treat Rev. 2001;27(3):137-42. doi: 10.1053/ctrv.2000.0207. [PubMed: 11417963].
  • 8. Ture M, Tokatli F, Kurt I. Using Kaplan–Meier analysis together with decision tree methods (C&RT, CHAID, QUEST, C4.5 and ID3) in determining recurrence-free survival of breast cancer patients. Expert Systems Appl. 2009;36(2):2017-26. doi: 10.1016/j.eswa.2007.12.002.
  • 9. Davoodi SH, Malek-Shahabi T, Malekshahi-Moghadam A, Shahbazi R, Esmaeili S. Obesity as an important risk factor for certain types of cancer. Iran J Cancer Prev. 2013;6(4):186-94. [PubMed: 25250133]. [PubMed Central: PMC4142931].
  • 10. Delen D, Walker G, Kadam A. Predicting breast cancer survivability: a comparison of three data mining methods. Artif Intell Med. 2005;34(2):113-27. doi: 10.1016/j.artmed.2004.07.002. [PubMed: 15894176].
  • 11. Lambert PC. Modeling of the cure fraction in survival studies. Stata J. 2007;7(3):351.
  • 12. Lambert PC, Thompson JR, Weston CL, Dickman PW. Estimating and modeling the cure fraction in population-based cancer survival analysis. Biostatistics. 2007;8(3):576-94. doi: 10.1093/biostatistics/kxl030. [PubMed: 17021277].
  • 13. Gu Y, Sinha D, Banerjee S. Analysis of cure rate survival data under proportional odds model. Lifetime Data Anal. 2011;17(1):123-34. doi: 10.1007/s10985-010-9171-z. [PubMed: 20521166]. [PubMed Central: PMC2943572].
  • 14. Arano I, Sugimoto T, Hamasaki T, Ohno Y. Practical application of cure mixture model for long-term censored survivor data from a withdrawal clinical trial of patients with major depressive disorder. BMC Med Res Methodol. 2010;10:33. doi: 10.1186/1471-2288-10-33. [PubMed: 20412598]. [PubMed Central: PMC2880122].
  • 15. Peto R, Lee PN, Paige WS. Statistical analysis of the bioassay of continuous carcinogens. Br J Cancer. 1972;26(4):258-61. [PubMed: 5071187]. [PubMed Central: PMC2008655].
  • 16. Carrasco JMF, Ortega EMM, Cordeiro GM. A generalized modified Weibull distribution for lifetime modeling. Comput Statistics Data Analysis. 2008;53(2):450-62. doi: 10.1016/j.csda.2008.08.023.
  • 17. Wang D. Maller RA, Zhou X, Survival analysis with long-term survivors. Statistic Methods Med Res. 2000;9:520.
  • 18. Abu Bakar MR, Salah KA, Ibrahim NA. Cure fraction, modelling and estimating in a population-based cancer survival analysis. Malaysian J Math Sci. 2008;2:113-34.
  • 19. Asano J, Hirakawa A, Hamada C. Assessing the prediction accuracy of cure in the Cox proportional hazards cure model: an application to breast cancer data. Pharm Stat. 2014;13(6):357-63. doi: 10.1002/pst.1630. [PubMed: 25044997].
  • 20. Ortega EMM, Barriga GDC, Hashimoto EM, Cancho VG, Cordeiro GM. A new class of survival regression models with cure fraction. J Data Sci. 2014;12(1):107-36.
  • 21. Bradburn MJ, Clark TG, Love SB, Altman DG. Survival analysis part II: multivariate data analysis--an introduction to concepts and methods. Br J Cancer. 2003;89(3):431-6. doi: 10.1038/sj.bjc.6601119. [PubMed: 12888808]. [PubMed Central: PMC2394368].
  • 22. Cox PR. Life Tables. Wiley Online Library; 1972.
  • 23. Kuk AYC, Chen CH. A mixture model combining logistic regression with proportional hazards regression. Biometrika. 1992;79(3):531-41.
  • 24. Sy JP, Taylor JM. Estimation in a Cox proportional hazards cure model. Biometrics. 2000;56(1):227-36. [PubMed: 10783800].
  • 25. Lu W. Maximum likelihood estimation in the proportional hazards cure model. Ann Inst Statistic Math. 2007;60(3):545-74. doi: 10.1007/s10463-007-0120-x.
  • 26. Rama R, Swaminathan R, Venkatesan P. Cure models for estimating hospital-based breast cancer survival. Asian Pac J Cancer Prev. 2010;11(2):387-91. [PubMed: 20843121].
  • 27. Achcar JA, Coelho-Barros EA, Mazucheli J. Cure fraction models using mixture and non-mixture models. Tatra Mountains Math Publicat. 2012;51(1):1-9. doi: 10.2478/v10127-012-0001-4.
  • 28. Othus M, Barlogie B, Leblanc ML, Crowley JJ. Cure models as a useful statistical tool for analyzing survival. Clin Cancer Res. 2012;18(14):3731-6. doi: 10.1158/1078-0432.CCR-11-2859. [PubMed: 22675175]. [PubMed Central: PMC3744099].
  • 29. Akhlaghi AA, Najafi I, Mahmoodi M, Shojaee A, Yousefifard M, Hosseini M. Survival analysis of Iranian patients undergoing continuous ambulatory peritoneal dialysis using cure model. J Res Health Sci. 2013;13(1):32-6. [PubMed: 23772014].
  • 30. Yu XQ, De Angelis R, Andersson TM, Lambert PC, O'Connell DL, Dickman PW. Estimating the proportion cured of cancer: some practical advice for users. Cancer Epidemiol. 2013;37(6):836-42. doi: 10.1016/j.canep.2013.08.014. [PubMed: 24042025].
  • 31. Rahimzadeh M, Baghestani AR, Gohari MR, Pourhoseingholi MA. Estimation of the cure rate in Iranian breast cancer patients. Asian Pac J Cancer Prev. 2014;15(12):4839-42. [PubMed: 24998549].
  • 32. Ture M, Tokatli F, Kurt Omurlu I. The comparisons of prognostic indexes using data mining techniques and Cox regression analysis in the breast cancer data. Expert Systems Applicat. 2009;36(4):8247-54. doi: 10.1016/j.eswa.2008.10.014.
  • 33. Abadi A, Yavari P, Dehghani-Arani M, Alavi-Majd H, Ghasemi E, Amanpour F, et al. Cox models survival analysis based on breast cancer treatments. Iran J Cancer Prev. 2014;7(3):124-9. [PubMed: 25250162]. [PubMed Central: PMC4171826].
  • 34. Rezaianzadeh A, Peacock J, Reidpath D, Talei A, Hosseini SV, Mehrabani D. Survival analysis of 1148 women diagnosed with breast cancer in Southern Iran. BMC Cancer. 2009;9:168. doi: 10.1186/1471-2407-9-168. [PubMed: 19497131]. [PubMed Central: PMC2699348].
  • 35. Kuru B, Camlibel M, Gulcelik MA, Alagol H. Prognostic factors affecting survival and disease-free survival in lymph node-negative breast carcinomas. J Surg Oncol. 2003;83(3):167-72. doi: 10.1002/jso.10264. [PubMed: 12827686].
  • 36. Arpino G, Bardou VJ, Clark GM, Elledge RM. Infiltrating lobular carcinoma of the breast: tumor characteristics and clinical outcome. Breast Cancer Res. 2004;6(3):R149-56. doi: 10.1186/bcr767. [PubMed: 15084238]. [PubMed Central: PMC400666].
  • 37. Ziaei JE, Sanaat Z, Asvadi I, Dastgiri S, Pourzand A, Vaez J. Survival analysis of breast cancer patients in northwest Iran. Asian Pac J Cancer Prev. 2013;14(1):39-42. [PubMed: 23534759].
  • 38. Vahdaninia M, Montazeri A. Breast cancer in Iran: a survival analysis. Asian Pac J Cancer Prev. 2004;5(2):223-5. [PubMed: 15244529].
  • 39. Akbari A, Razzaghi Z, Homaee F, Khayamzadeh M, Movahedi M, Akbari ME. Parity and breastfeeding are preventive measures against breast cancer in Iranian women. Breast Cancer. 2011;18(1):51-5. doi: 10.1007/s12282-010-0203-z. [PubMed: 20217489].
  • 40. Akbari ME, Khayamzadeh M, Khoshnevis SJ, Nafisi N, Akbari A. Five and ten years survival in breast cancer patients mastectomies vs. breast conserving surgeries personal experience. Iran J Cancer Prevent. 2008;1(2):53-6.
  • 41. Faradmal J, Talebi A, Rezaianzadeh A, Mahjub H. Survival analysis of breast cancer patients using Cox and frailty models. J Res Health Sci. 2012;12(2):127-30. [PubMed: 23241526].
  • 42. Nafissi N, Saghafinia M, Motamedi MH, Akbari ME. A survey of breast cancer knowledge and attitude in Iranian women. J Cancer Res Ther. 2012;8(1):46-9. doi: 10.4103/0973-1482.95173. [PubMed: 22531513].
  • 43. Movahedi M, Haghighat S, Khayamzadeh M, Moradi A, Ghanbari-Motlagh A, Mirzaei H, et al. Survival rate of breast cancer based on geographical variation in iran, a national study. Iran Red Crescent Med J. 2012;14(12):798-804. doi: 10.5812/ircmj.3631. [PubMed: 23483369]. [PubMed Central: PMC3587870].
  • 44. Jafari-Koshki T, Mansourian M, Mokarian F. Exploring factors related to metastasis free survival in breast cancer patients using Bayesian cure models. Asian Pac J Cancer Prev. 2014;15(22):9673-8. [PubMed: 25520087].
  • 45. Momenyan S, Sadeghifar M, Sarvi F, Khodadost M, Mosavi-Jarrahi A, Ghaffari ME, et al. Relationship between Urbanization and Cancer Incidence in Iran Using Quantile Regression. Asian Pac J Cancer Prev. 2016;17(S3):113-7. [PubMed: 27165247].
  • 46. Peng Y, Dear KB, Denham JW. A generalized F mixture model for cure rate estimation. Stat Med. 1998;17(8):813-30. [PubMed: 9595613].
  • 47. Yamaguchi K. Accelerated Failure-Time Regression Models with a Regression Model of Surviving Fraction: An Application to the Analysis of "Permanent Employment" in Japan. J Am Statistic Assoc. 1992;87(418):284. doi: 10.2307/2290258.
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments