International Journal of Cancer Management

Published by: Kowsar

Diagnosis of Breast Tumors with Sonographic Texture Analysis Using Run-length Matrix

Ali Abbasian Ardakani 1 , Afshin Mohammadi 2 , * , Akbar Gharbali 3 and Aram Rostami 1
Authors Information
1 Department of Medical Physics, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
2 Department of Radiology, Faculty of Medicine, Imam Khomeini Hospital, Urmia University of Medical Sciences, Urmia, Iran
3 Department of Medical Physics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
Article information
  • International Journal of Cancer Management: February 2018, 11 (2); e6120
  • Published Online: April 22, 2017
  • Article Type: Research Article
  • Received: March 20, 2016
  • Accepted: March 12, 2017
  • DOI: 10.5812/ijcm.6120

To Cite: Abbasian Ardakani A, Mohammadi A, Gharbali A, Rostami A. Diagnosis of Breast Tumors with Sonographic Texture Analysis Using Run-length Matrix, Int J Cancer Manag. 2018 ;11(2):e6120. doi: 10.5812/ijcm.6120.

Abstract
Copyright © 2017, International Journal of Cancer Management. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Jackson VP, Hendrick RE, Feig SA, Kopans DB. Imaging of the radiographically dense breast. Radiology. 1993;188(2):297-301. doi: 10.1148/radiology.188.2.8327668. [PubMed: 8327668].
  • 2. Berg WA, Blume JD, Cormack JB, Mendelson EB, Lehrer D, Bohm-Velez M, et al. Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. JAMA. 2008;299(18):2151-63. doi: 10.1001/jama.299.18.2151. [PubMed: 18477782].
  • 3. Stavros AT, Thickman D, Rapp CL, Dennis MA, Parker SH, Sisney GA. Solid breast nodules: use of sonography to distinguish between benign and malignant lesions. Radiology. 1995;196(1):123-34. doi: 10.1148/radiology.196.1.7784555. [PubMed: 7784555].
  • 4. Rubin M, Horiuchi K, Joy N, Haun W, Read R, Ratzer E, et al. Use of fine needle aspiration for solid breast lesions is accurate and cost-effective. Am J Surg. 1997;174(6):694-6. discussion 697-8. doi: 10.1016/S0002-9610(97)00192-X. [PubMed: 9409599].
  • 5. Meyer JE, Eberlein TJ, Stomper PC, Sonnenfeld MR. Biopsy of occult breast lesions. Analysis of 1261 abnormalities. JAMA. 1990;263(17):2341-3. doi: 10.1001/jama.1990.03440170063037. [PubMed: 2157903].
  • 6. Materka A. Texture analysis methodologies for magnetic resonance imaging. Dialogues Clin Neurosci. 2004;6(2):243-50. [PubMed: 22033841].
  • 7. Szczypinski PM, Strzelecki M, Materka A, Klepaczko A. MaZda--a software package for image texture analysis. Comput Methods Programs Biomed. 2009;94(1):66-76. doi: 10.1016/j.cmpb.2008.08.005. [PubMed: 18922598].
  • 8. Castellano G, Bonilha L, Li LM, Cendes F. Texture analysis of medical images. Clin Radiol. 2004;59(12):1061-9. doi: 10.1016/j.crad.2004.07.008. [PubMed: 15556588].
  • 9. Moon WK, Shen YW, Huang CS, Chiang LR, Chang RF. Computer-aided diagnosis for the classification of breast masses in automated whole breast ultrasound images. Ultrasound Med Biol. 2011;37(4):539-48. doi: 10.1016/j.ultrasmedbio.2011.01.006. [PubMed: 21420580].
  • 10. Zhou S, Shi J, Zhu J, Cai Y, Wang R. Shearlet-based texture feature extraction for classification of breast tumor in ultrasound image. Biomed Signal Process Control. 2013;8(6):688-96. doi: 10.1016/j.bspc.2013.06.011.
  • 11. Zhang Q, Xiao Y, Chen S, Wang C, Zheng H. Quantification of elastic heterogeneity using contourlet-based texture analysis in shear-wave elastography for breast tumor classification. Ultrasound Med Biol. 2015;41(2):588-600. doi: 10.1016/j.ultrasmedbio.2014.09.003. [PubMed: 25444693].
  • 12. Wu WJ, Lin SW, Moon WK. An Artificial Immune System-Based Support Vector Machine Approach for Classifying Ultrasound Breast Tumor Images. J Digit Imaging. 2015;28(5):576-85. doi: 10.1007/s10278-014-9757-1. [PubMed: 25561066].
  • 13. Galloway MM. Texture analysis using gray level run lengths. Comput Grf Image Proc. 1975;4(2):172-9. doi: 10.1016/s0146-664x(75)80008-6.
  • 14. Webb AR. Introduction to Statistical Pattern Recognition. Statistical Pattern Recognition. John Wiley & Sons, Ltd; 2003. p. 1-31.
  • 15. Fukunaga K. Introduction to statistical pattern recognition. Academic press; 2013.
  • 16. Anderson J, Pellionisz A, Rosenfeld E. Neurocomputing II. Directions for Research. MIT Press. Cambridge, MA; 1990.
  • 17. van Erkel AR, Pattynama PM. Receiver operating characteristic (ROC) analysis: basic principles and applications in radiology. Eur J Radiol. 1998;27(2):88-94. doi: 10.1016/S0720-048X(97)00157-5. [PubMed: 9639133].
  • 18. Jalalian A, Mashohor SB, Mahmud HR, Saripan MI, Ramli AR, Karasfi B. Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: a review. Clin Imaging. 2013;37(3):420-6. doi: 10.1016/j.clinimag.2012.09.024. [PubMed: 23153689].
  • 19. Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991;13(2):111-34. doi: 10.1177/016173469101300201. [PubMed: 1858217].
  • 20. Xiao Y, Zeng J, Niu L, Zeng Q, Wu T, Wang C, et al. Computer-aided diagnosis based on quantitative elastographic features with supersonic shear wave imaging. Ultrasound Med Biol. 2014;40(2):275-86. doi: 10.1016/j.ultrasmedbio.2013.09.032. [PubMed: 24268454].
  • 21. Zhang X, Xiao Y, Zeng J, Qiu W, Qian M, Wang C, et al. Computer-assisted assessment of ultrasound real-time elastography: initial experience in 145 breast lesions. Eur J Radiol. 2014;83(1):e1-7. doi: 10.1016/j.ejrad.2013.09.009. [PubMed: 24148563].
  • 22. Chen DR, Chang RF, Chen CJ, Ho MF, Kuo SJ, Chen ST, et al. Classification of breast ultrasound images using fractal feature. Clin Imaging. 2005;29(4):235-45. doi: 10.1016/j.clinimag.2004.11.024. [PubMed: 15967313].
  • 23. Liu H, Jiang Y, Dai Q, Zhu Q, Wang L, Zhang J, et al. Differentiation of benign and malignant sub-1-cm breast lesions using contrast-enhanced sonography. J Ultrasound Med. 2015;34(1):117-23. doi: 10.7863/ultra.34.1.117. [PubMed: 25542947].
  • 24. Chen DR, Huang YL, Lin SH. Computer-aided diagnosis with textural features for breast lesions in sonograms. Comput Med Imaging Graph. 2011;35(3):220-6. doi: 10.1016/j.compmedimag.2010.11.003. [PubMed: 21131178].
  • 25. Chen L, Chen Y, Diao XH, Fang L, Pang Y, Cheng AQ, et al. Comparative study of automated breast 3-D ultrasound and handheld B-mode ultrasound for differentiation of benign and malignant breast masses. Ultrasound Med Biol. 2013;39(10):1735-42. doi: 10.1016/j.ultrasmedbio.2013.04.003. [PubMed: 23849390].
  • 26. Tan T, Platel B, Twellmann T, van Schie G, Mus R, Grivegnee A, et al. Evaluation of the effect of computer-aided classification of benign and malignant lesions on reader performance in automated three-dimensional breast ultrasound. Acad Radiol. 2013;20(11):1381-8. doi: 10.1016/j.acra.2013.07.013. [PubMed: 24119350].
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments