International Journal of Cancer Management

Published by: Kowsar

Diagnosis of Breast Tumors with Sonographic Texture Analysis Using Run-length Matrix

Ali Abbasian Ardakani 1 , Afshin Mohammadi 2 , * , Akbar Gharbali 3 and Aram Rostami 1
Authors Information
1 Department of Medical Physics, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
2 Department of Radiology, Faculty of Medicine, Imam Khomeini Hospital, Urmia University of Medical Sciences, Urmia, Iran
3 Department of Medical Physics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
Article information
  • International Journal of Cancer Management: February 2018, 11 (2); e6120
  • Published Online: April 22, 2017
  • Article Type: Research Article
  • Received: March 20, 2016
  • Accepted: March 12, 2017
  • DOI: 10.5812/ijcm.6120

To Cite: Abbasian Ardakani A, Mohammadi A, Gharbali A, Rostami A. Diagnosis of Breast Tumors with Sonographic Texture Analysis Using Run-length Matrix, Int J Cancer Manag. 2018 ; 11(2):e6120. doi: 10.5812/ijcm.6120.

Copyright © 2017, International Journal of Cancer Management. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
  • 1. Jackson VP, Hendrick RE, Feig SA, Kopans DB. Imaging of the radiographically dense breast. Radiology. 1993;188(2):297-301. doi: 10.1148/radiology.188.2.8327668. [PubMed: 8327668].
  • 2. Berg WA, Blume JD, Cormack JB, Mendelson EB, Lehrer D, Bohm-Velez M, et al. Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. JAMA. 2008;299(18):2151-63. doi: 10.1001/jama.299.18.2151. [PubMed: 18477782].
  • 3. Stavros AT, Thickman D, Rapp CL, Dennis MA, Parker SH, Sisney GA. Solid breast nodules: use of sonography to distinguish between benign and malignant lesions. Radiology. 1995;196(1):123-34. doi: 10.1148/radiology.196.1.7784555. [PubMed: 7784555].
  • 4. Rubin M, Horiuchi K, Joy N, Haun W, Read R, Ratzer E, et al. Use of fine needle aspiration for solid breast lesions is accurate and cost-effective. Am J Surg. 1997;174(6):694-6. discussion 697-8. doi: 10.1016/S0002-9610(97)00192-X. [PubMed: 9409599].
  • 5. Meyer JE, Eberlein TJ, Stomper PC, Sonnenfeld MR. Biopsy of occult breast lesions. Analysis of 1261 abnormalities. JAMA. 1990;263(17):2341-3. doi: 10.1001/jama.1990.03440170063037. [PubMed: 2157903].
  • 6. Materka A. Texture analysis methodologies for magnetic resonance imaging. Dialogues Clin Neurosci. 2004;6(2):243-50. [PubMed: 22033841].
  • 7. Szczypinski PM, Strzelecki M, Materka A, Klepaczko A. MaZda--a software package for image texture analysis. Comput Methods Programs Biomed. 2009;94(1):66-76. doi: 10.1016/j.cmpb.2008.08.005. [PubMed: 18922598].
  • 8. Castellano G, Bonilha L, Li LM, Cendes F. Texture analysis of medical images. Clin Radiol. 2004;59(12):1061-9. doi: 10.1016/j.crad.2004.07.008. [PubMed: 15556588].
  • 9. Moon WK, Shen YW, Huang CS, Chiang LR, Chang RF. Computer-aided diagnosis for the classification of breast masses in automated whole breast ultrasound images. Ultrasound Med Biol. 2011;37(4):539-48. doi: 10.1016/j.ultrasmedbio.2011.01.006. [PubMed: 21420580].
  • 10. Zhou S, Shi J, Zhu J, Cai Y, Wang R. Shearlet-based texture feature extraction for classification of breast tumor in ultrasound image. Biomed Signal Process Control. 2013;8(6):688-96. doi: 10.1016/j.bspc.2013.06.011.
  • 11. Zhang Q, Xiao Y, Chen S, Wang C, Zheng H. Quantification of elastic heterogeneity using contourlet-based texture analysis in shear-wave elastography for breast tumor classification. Ultrasound Med Biol. 2015;41(2):588-600. doi: 10.1016/j.ultrasmedbio.2014.09.003. [PubMed: 25444693].
  • 12. Wu WJ, Lin SW, Moon WK. An Artificial Immune System-Based Support Vector Machine Approach for Classifying Ultrasound Breast Tumor Images. J Digit Imaging. 2015;28(5):576-85. doi: 10.1007/s10278-014-9757-1. [PubMed: 25561066].
  • 13. Galloway MM. Texture analysis using gray level run lengths. Comput Grf Image Proc. 1975;4(2):172-9. doi: 10.1016/s0146-664x(75)80008-6.
  • 14. Webb AR. Introduction to Statistical Pattern Recognition. Statistical Pattern Recognition. John Wiley & Sons, Ltd; 2003. p. 1-31.
  • 15. Fukunaga K. Introduction to statistical pattern recognition. Academic press; 2013.
  • 16. Anderson J, Pellionisz A, Rosenfeld E. Neurocomputing II. Directions for Research. MIT Press. Cambridge, MA; 1990.
  • 17. van Erkel AR, Pattynama PM. Receiver operating characteristic (ROC) analysis: basic principles and applications in radiology. Eur J Radiol. 1998;27(2):88-94. doi: 10.1016/S0720-048X(97)00157-5. [PubMed: 9639133].
  • 18. Jalalian A, Mashohor SB, Mahmud HR, Saripan MI, Ramli AR, Karasfi B. Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: a review. Clin Imaging. 2013;37(3):420-6. doi: 10.1016/j.clinimag.2012.09.024. [PubMed: 23153689].
  • 19. Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991;13(2):111-34. doi: 10.1177/016173469101300201. [PubMed: 1858217].
  • 20. Xiao Y, Zeng J, Niu L, Zeng Q, Wu T, Wang C, et al. Computer-aided diagnosis based on quantitative elastographic features with supersonic shear wave imaging. Ultrasound Med Biol. 2014;40(2):275-86. doi: 10.1016/j.ultrasmedbio.2013.09.032. [PubMed: 24268454].
  • 21. Zhang X, Xiao Y, Zeng J, Qiu W, Qian M, Wang C, et al. Computer-assisted assessment of ultrasound real-time elastography: initial experience in 145 breast lesions. Eur J Radiol. 2014;83(1):e1-7. doi: 10.1016/j.ejrad.2013.09.009. [PubMed: 24148563].
  • 22. Chen DR, Chang RF, Chen CJ, Ho MF, Kuo SJ, Chen ST, et al. Classification of breast ultrasound images using fractal feature. Clin Imaging. 2005;29(4):235-45. doi: 10.1016/j.clinimag.2004.11.024. [PubMed: 15967313].
  • 23. Liu H, Jiang Y, Dai Q, Zhu Q, Wang L, Zhang J, et al. Differentiation of benign and malignant sub-1-cm breast lesions using contrast-enhanced sonography. J Ultrasound Med. 2015;34(1):117-23. doi: 10.7863/ultra.34.1.117. [PubMed: 25542947].
  • 24. Chen DR, Huang YL, Lin SH. Computer-aided diagnosis with textural features for breast lesions in sonograms. Comput Med Imaging Graph. 2011;35(3):220-6. doi: 10.1016/j.compmedimag.2010.11.003. [PubMed: 21131178].
  • 25. Chen L, Chen Y, Diao XH, Fang L, Pang Y, Cheng AQ, et al. Comparative study of automated breast 3-D ultrasound and handheld B-mode ultrasound for differentiation of benign and malignant breast masses. Ultrasound Med Biol. 2013;39(10):1735-42. doi: 10.1016/j.ultrasmedbio.2013.04.003. [PubMed: 23849390].
  • 26. Tan T, Platel B, Twellmann T, van Schie G, Mus R, Grivegnee A, et al. Evaluation of the effect of computer-aided classification of benign and malignant lesions on reader performance in automated three-dimensional breast ultrasound. Acad Radiol. 2013;20(11):1381-8. doi: 10.1016/j.acra.2013.07.013. [PubMed: 24119350].

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments