International Journal of Cancer Management

Published by: Kowsar

Comparative Proteomic Analysis of Breast Cancer Tissue and the Adjacent Normal Tissue in Iranian Patients with HER2 Negative Ductal Carcinoma of Breast

Mayram Amiri-Shoar 1 , Masoumeh Hosseini 1 , Mitra Arianmanesh 2 , Reza Eghdam-Zamiri 3 , Shahrokh Attarian 4 and Ali Awsat Mellati 1 , *
Authors Information
1 Zanjan Metabolic Disease Research Center, Department of Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
2 Zanjan Metabolic Disease Research Center, Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
3 Department of Radiation Oncology, Zanjan University of Medical Sciences, Zanjan, Iran
4 Zanjan University of Medical Sciences, Zanjan, Iran
Article information
  • International Journal of Cancer Management: May 2017, 10 (5); e6019
  • Published Online: May 21, 2017
  • Article Type: Research Article
  • Received: March 13, 2016
  • Revised: July 29, 2016
  • Accepted: April 29, 2017
  • DOI: 10.5812/ijcm.6019

To Cite: Amiri-Shoar M, Hosseini M, Arianmanesh M, Eghdam-Zamiri R, Attarian S, et al. Comparative Proteomic Analysis of Breast Cancer Tissue and the Adjacent Normal Tissue in Iranian Patients with HER2 Negative Ductal Carcinoma of Breast, Int J Cancer Manag. 2017 ; 10(5):e6019. doi: 10.5812/ijcm.6019.

Copyright © 2017, International Journal of Cancer Management. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
  • 1. Donepudi MS, Kondapalli K, Amos SJ, Venkanteshan P. Breast cancer statistics and markers. J Cancer Res Ther. 2014; 10(3): 506-11[DOI][PubMed]
  • 2. Iran Center for Disease Management. . Ministry of health and medical education, center for disease management, cancer department. National Registration Cancer Cases Reported in 2010.
  • 3. Kaminska M, Ciszewski T, Lopacka-Szatan K, Miotla P, Staroslawska E. Breast cancer risk factors. Prz Menopauzalny. 2015; 14(3): 196-202[DOI][PubMed]
  • 4. Amani D, Khalilnezhad A, Ghaderi A, Niikawa N, Yoshiura K. Transforming growth factor beta1 (TGFbeta1) polymorphisms and breast cancer risk. Tumour Biol. 2014; 35(5): 4757-64[DOI][PubMed]
  • 5. Singh RR, Kumar R. Steroid hormone receptor signaling in tumorigenesis. J Cell Biochem. 2005; 96(3): 490-505[DOI][PubMed]
  • 6. Yanagawa M, Ikemot K, Kawauchi S, Furuya T, Yamamoto S, Oka M, et al. Luminal A and luminal B (HER2 negative) subtypes of breast cancer consist of a mixture of tumors with different genotype. BMC Res Notes. 2012; 5: 376[DOI][PubMed]
  • 7. Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, Senn HJ, et al. Strategies for subtypes--dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol. 2011; 22(8): 1736-47[DOI][PubMed]
  • 8. Yersal O, Barutca S. Biological subtypes of breast cancer: Prognostic and therapeutic implications. World J Clin Oncol. 2014; 5(3): 412-24[DOI][PubMed]
  • 9. Inic Z, Zegarac M, Inic M, Markovic I, Kozomara Z, Djurisic I, et al. Difference between Luminal A and Luminal B Subtypes According to Ki-67, Tumor Size, and Progesterone Receptor Negativity Providing Prognostic Information. Clin Med Insights Oncol. 2014; 8: 107-11[DOI][PubMed]
  • 10. Deng SS, Xing TY, Zhou HY, Xiong RH, Lu YG, Wen B, et al. Comparative proteome analysis of breast cancer and adjacent normal breast tissues in human. Genomics Proteomics Bioinformatics. 2006; 4(3): 165-72[DOI][PubMed]
  • 11. Shekhar MP, Pauley R, Heppner G. Host microenvironment in breast cancer development: extracellular matrix-stromal cell contribution to neoplastic phenotype of epithelial cells in the breast. Breast Cancer Res. 2003; 5(3): 130-5[DOI][PubMed]
  • 12. Alexander H, Stegner AL, Wagner-Mann C, Du Bois GC, Alexander S, Sauter ER. Proteomic analysis to identify breast cancer biomarkers in nipple aspirate fluid. Clin Cancer Res. 2004; 10(22): 7500-10[DOI][PubMed]
  • 13. Hodgkinson VC, Agarwal V, E. LFadl D , Fox JN, McManus PL, Mahapatra TK, et al. Pilot and feasibility study: comparative proteomic analysis by 2-DE MALDI TOF/TOF MS reveals 14-3-3 proteins as putative biomarkers of response to neoadjuvant chemotherapy in ER-positive breast cancer. J Proteomics. 2012; 75(9): 2745-52[DOI][PubMed]
  • 14. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72: 248-54[PubMed]
  • 15. Demydenko D, Berest I. Expression of galectin-1 in malignant tumors. Exp Oncol. 2009; 31(2): 74-9[PubMed]
  • 16. Lotan R, Belloni PN, Tressler RJ, Lotan D, Xu XC, Nicolson GL. Expression of galectins on microvessel endothelial cells and their involvement in tumour cell adhesion. Glycoconj J. 1994; 11(5): 462-8[PubMed]
  • 17. Juszczynski P, Ouyang J, Monti S, Rodig SJ, Takeyama K, Abramson J, et al. The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proc Natl Acad Sci U S A. 2007; 104(32): 13134-9[DOI][PubMed]
  • 18. Butler GS, Dean RA, Tam EM, Overall CM. Pharmacoproteomics of a metalloproteinase hydroxamate inhibitor in breast cancer cells: dynamics of membrane type 1 matrix metalloproteinase-mediated membrane protein shedding. Mol Cell Biol. 2008; 28(15): 4896-914[DOI][PubMed]
  • 19. Thijssen VL, Postel R, Brandwijk RJ, Dings RP, Nesmelova I, Satijn S, et al. Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy. Proc Natl Acad Sci U S A. 2006; 103(43): 15975-80[DOI][PubMed]
  • 20. Lahm H, Andre S, Hoeflich A, Fischer JR, Sordat B, Kaltner H, et al. Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures. J Cancer Res Clin Oncol. 2001; 127(6): 375-86[PubMed]
  • 21. Perillo NL, Pace KE, Seilhamer JJ, Baum LG. Apoptosis of T cells mediated by galectin-1. Nature. 1995; 378(6558): 736-9[DOI][PubMed]
  • 22. Jung EJ, Moon HG, Cho BI, Jeong CY, Joo YT, Lee YJ, et al. Galectin-1 expression in cancer-associated stromal cells correlates tumor invasiveness and tumor progression in breast cancer. Int J Cancer. 2007; 120(11): 2331-8[DOI][PubMed]
  • 23. Imai K, Ichibangase T, Saitoh R, Hoshikawa Y. A proteomics study on human breast cancer cell lines by fluorogenic derivatization-liquid chromatography/tandem mass spectrometry. Biomed Chromatogr. 2008; 22(11): 1304-14[DOI][PubMed]
  • 24. Daroqui CM, Ilarregui JM, Rubinstein N, Salatino M, Toscano MA, Vazquez P, et al. Regulation of galectin-1 expression by transforming growth factor beta1 in metastatic mammary adenocarcinoma cells: implications for tumor-immune escape. Cancer Immunol Immunother. 2007; 56(4): 491-9[DOI][PubMed]
  • 25. Mackay A, Jones C, Dexter T, Silva RL, Bulmer K, Jones A, et al. cDNA microarray analysis of genes associated with ERBB2 (HER2/neu) overexpression in human mammary luminal epithelial cells. Oncogene. 2003; 22(17): 2680-8[DOI][PubMed]
  • 26. Huber SA, Bigi G, Lucas ZJ. Tumor-specific suppressor cells induced by immunization with spleen cells from tumor-bearing animals. Cancer Res. 1980; 40(10): 3477-83[PubMed]
  • 27. Baldwin RW, Embleton MJ, Robins RA. Cellular and humoral immunity to rat hepatoma-specific antigens correlated with tumour status. Int J Cancer. 1973; 11(1): 1-10[PubMed]
  • 28. Cho W, Jung K, Regnier FE. Sialylated Lewis x antigen bearing glycoproteins in human plasma. J Proteome Res. 2010; 9(11): 5960-8[DOI][PubMed]
  • 29. Chen Z, Gu J. Immunoglobulin G expression in carcinomas and cancer cell lines. FASEB J. 2007; 21(11): 2931-8[DOI][PubMed]
  • 30. Liang PY, Li HY, Zhou ZY, Jin YX, Wang SX, Peng XH, et al. Overexpression of immunoglobulin G prompts cell proliferation and inhibits cell apoptosis in human urothelial carcinoma. Tumour Biol. 2013; 34(3): 1783-91[DOI][PubMed]
  • 31. Jiang C, Huang T, Wang Y, Huang G, Wan X, Gu J. Immunoglobulin G expression in lung cancer and its effects on metastasis. PLoS One. 2014; 9(5): 97359[DOI][PubMed]
  • 32. Gelebart P, Opas M, Michalak M. Calreticulin, a Ca2+-binding chaperone of the endoplasmic reticulum. Int J Biochem Cell Biol. 2005; 37(2): 260-6[DOI][PubMed]
  • 33. Qiu Y, Michalak M. Transcriptional control of the calreticulin gene in health and disease. Int J Biochem Cell Biol. 2009; 41(3): 531-8[DOI][PubMed]
  • 34. Schardt JA, Eyholzer M, Timchenko NA, Mueller BU, Pabst T. Unfolded protein response suppresses CEBPA by induction of calreticulin in acute myeloid leukaemia. J Cell Mol Med. 2010; 14(6B): 1509-19[DOI][PubMed]
  • 35. Prathyuman S, Sellappa S, Joseph S, Keyan KS. Enhanced calreticulin expression triggers apoptosis in the MCF-7 cell line. Asian Pac J Cancer Prev. 2010; 11(4): 1133-6[PubMed]
  • 36. Peng RQ, Chen YB, Ding Y, Zhang R, Zhang X, Yu XJ, et al. Expression of calreticulin is associated with infiltration of T-cells in stage IIIB colon cancer. World J Gastroenterol. 2010; 16(19): 2428-34[PubMed]
  • 37. Chao MP, Jaiswal S, Weissman-Tsukamoto R, Alizadeh AA, Gentles AJ, Volkmer J, et al. Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci Transl Med. 2010; 2(63): 63ra94[DOI][PubMed]
  • 38. Eric A, Juranic Z, Milovanovic Z, Markovic I, Inic M, Stanojevic-Bakic N, et al. Effects of humoral immunity and calreticulin overexpression on postoperative course in breast cancer. Pathol Oncol Res. 2009; 15(1): 89-90[DOI][PubMed]
  • 39. Magin TM, Vijayaraj P, Leube RE. Structural and regulatory functions of keratins. Exp Cell Res. 2007; 313(10): 2021-32[DOI][PubMed]
  • 40. Karantza V. Keratins in health and cancer: more than mere epithelial cell markers. Oncogene. 2011; 30(2): 127-38[DOI][PubMed]
  • 41. Barak V, Goike H, Panaretakis KW, Einarsson R. Clinical utility of cytokeratins as tumor markers. Clini Biochem. 2004; 37(7): 529-40
  • 42. Nicolini A, Ferrari P, Rossi G. Mucins and cytokeratins as serum tumor markers in breast cancer. Adv Exp Med Biol. 2015; 867: 197-225
  • 43. Somiari RI, Sullivan A, Russell S, Somiari S, Hu H, Jordan R, et al. High-throughput proteomic analysis of human infiltrating ductal carcinoma of the breast. Proteomics. 2003; 3(10): 1863-73[DOI][PubMed]
  • 44. Cheung KJ, Padmanaban V, Silvestri V, Schipper K, Cohen JD, Fairchild AN, et al. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc Natl Acad Sci U S A. 2016; 113(7)-63[DOI][PubMed]
  • 45. Chen P, Cescon M, Bonaldo P. Collagen VI in cancer and its biological mechanisms. Trends Mol Med. 2013; 19(7): 410-7[DOI][PubMed]
  • 46. Iyengar P, Espina V, Williams TW, Lin Y, Berry D, Jelicks LA, et al. Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. J Clin Invest. 2005; 115(5): 1163-76[DOI][PubMed]
  • 47. Sato H, Kida Y, Mai M, Endo Y, Sasaki T, Tanaka J, et al. Expression of genes encoding type IV collagen-degrading metalloproteinases and tissue inhibitors of metalloproteinases in various human tumor cells. Oncogene. 1992; 7(1): 77-83[PubMed]
  • 48. Lawrence B, Perez-Atayde A, Hibbard MK, Rubin BP, Dal Cin P, Pinkus JL, et al. TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors. Am J Pathol. 2000; 157(2): 377-84[DOI][PubMed]
  • 49. Comunale MA, Rodemich-Betesh L, Hafner J, Wang M, Norton P, Di Bisceglie AM, et al. Linkage specific fucosylation of alpha-1-antitrypsin in liver cirrhosis and cancer patients: implications for a biomarker of hepatocellular carcinoma. PLoS One. 2010; 5(8): 12419[DOI][PubMed]
  • 50. El-Akawi ZJ, Abu-Awad AM, Sharara AM, Khader Y. The importance of alpha-1 antitrypsin (alpha1-AT) and neopterin serum levels in the evaluation of non-small cell lung and prostate cancer patients. Neuro Endocrinol Lett. 2010; 31(1): 113-6[PubMed]
  • 51. Lopez-Arias E, Aguilar-Lemarroy A, Felipe Jave-Suarez L, Morgan-Villela G, Mariscal-Ramirez I, Martinez-Velazquez M, et al. Alpha 1-antitrypsin: a novel tumor-associated antigen identified in patients with early-stage breast cancer. Electrophoresis. 2012; 33(14): 2130-7[DOI][PubMed]
  • 52. Gromov P, Gromova I, Bunkenborg J, Cabezon T, Moreira JM, Timmermans-Wielenga V, et al. Up-regulated proteins in the fluid bathing the tumour cell microenvironment as potential serological markers for early detection of cancer of the breast. Mol Oncol. 2010; 4(1): 65-89[DOI][PubMed]
  • 53. Azab BN, Bhatt VR, Vonfrolio S, Bachir R, Rubinshteyn V, Alkaied H, et al. Value of the pretreatment albumin to globulin ratio in predicting long-term mortality in breast cancer patients. Am J Surg. 2013; 206(5): 764-70[DOI][PubMed]
  • 54. Lis CG, Grutsch JF, Vashi PG, Lammersfeld CA. Is serum albumin an independent predictor of survival in patients with breast cancer? JPEN J Parenter Enteral Nutr. 2003; 27(1): 10-5[DOI][PubMed]
  • 55. Stehle G, Sinn H, Wunder A, Schrenk HH, Stewart JC, Hartung G, et al. Plasma protein (albumin) catabolism by the tumor itself--implications for tumor metabolism and the genesis of cachexia. Crit Rev Oncol Hematol. 1997; 26(2): 77-100[PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments