International Journal of Cancer Management

Published by: Kowsar

Enhancement of Cisplatin Efficacy by Gold Nanoparticles or Microwave Hyperthermia? An In Vitro Study on a Melanoma Cell Line

Raheleh Moradpoor 1 , 2 , 3 , Seyed Amir Aledavood 2 , Omid Rajabi 4 , Jamshid Khan Chamani 3 and Ameneh Sazgarnia 5 , *
Authors Information
1 Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2 Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
3 Department of Biology, Faculty of Science, Islamic Azad University, Mashhad Branch, Mashhad, Iran
4 Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
5 Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
Article information
  • Iranian Journal of Cancer Prevention: January 2017, 10 (1); e5925
  • Published Online: January 23, 2017
  • Article Type: Research Article
  • Received: March 8, 2016
  • Revised: September 5, 2016
  • Accepted: January 7, 2017
  • DOI: 10.17795/ijcp-5925

To Cite: Moradpoor R, Aledavood S A, Rajabi O, Khan Chamani J, Sazgarnia A. Enhancement of Cisplatin Efficacy by Gold Nanoparticles or Microwave Hyperthermia? An In Vitro Study on a Melanoma Cell Line, Int J Cancer Manag. 2017 ; 10(1):e5925. doi: 10.17795/ijcp-5925.

Abstract
Copyright © 2017, Iranian Journal of Cancer Prevention. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Introduction
2. Methods
3. Results
4. Discussion
Acknowledgements
Footnotes
References
  • 1. Cherukuri P, Glazer ES, Curley SA. Targeted hyperthermia using metal nanoparticles. Adv Drug Deliv Rev. 2010; 62(3): 339-45[DOI][PubMed]
  • 2. Helmbach H, Rossmann E, Kern MA, Schadendorf D. Drug-resistance in human melanoma. Int J Cancer. 2001; 93(5): 617-22[PubMed]
  • 3. Chu W, Pak BJ, Bani MR, Kapoor M, Lu SJ, Tamir A, et al. Tyrosinase-related protein 2 as a mediator of melanoma specific resistance to cis-diamminedichloroplatinum(II): therapeutic implications. Oncogene. 2000; 19(3): 395-402[DOI][PubMed]
  • 4. Rockmann H, Schadendorf D. Drug resistance in human melanoma: mechanisms and therapeutic opportunities. Onkologie. 2003; 26(6): 581-7[PubMed]
  • 5. Hwang TL, Lee WR, Hua SC, Fang JY. Cisplatin encapsulated in phosphatidylethanolamine liposomes enhances the in vitro cytotoxicity and in vivo intratumor drug accumulation against melanomas. J Dermatol Sci. 2007; 46(1): 11-20[DOI][PubMed]
  • 6. Stewart DJ. Mechanisms of resistance to cisplatin and carboplatin. Crit Rev Oncol Hematol. 2007; 63(1): 12-31[DOI][PubMed]
  • 7. Kartalou M, Essigmann JM. Mechanisms of resistance to cisplatin. Mutat Res. 2001; 478(1-2): 23-43[PubMed]
  • 8. Kubes J, Svoboda J, Rosina J, Starec M, Fiserova A. Immunological response in the mouse melanoma model after local hyperthermia. Physiol Res. 2008; 57(3): 459-65[PubMed]
  • 9. Horsman MR, Overgaard J. Hyperthermia: a potent enhancer of radiotherapy. Clin Oncol (R Coll Radiol). 2007; 19(6): 418-26[DOI][PubMed]
  • 10. Sugahara T, van der Zee J, Kampinga HH, Vujaskovic Z, Kondo M, Ohnishi T, et al. Kadota Fund International Forum 2004. Application of thermal stress for the improvement of health, 15-18 June 2004, Awaji Yumebutai International Conference Center, Awaji Island, Hyogo, Japan. Final report. Int J Hyperthermia. 2008; 24(2): 123-40[DOI][PubMed]
  • 11. Nielsen OS, Horsman M, Overgaard J. A future for hyperthermia in cancer treatment? Eur J Cancer. 2001; 37(13): 1587-9[PubMed]
  • 12. Takahashi I, Emi Y, Hasuda S, Kakeji Y, Maehara Y, Sugimachi K. Clinical application of hyperthermia combined with anticancer drugs for the treatment of solid tumors. Surgery. 2002; 131(1 Suppl)-84[PubMed]
  • 13. Craciunescu OI, Thrall DE, Vujaskovic Z, Dewhirst MW. Magnetic resonance imaging: a potential tool in assessing the addition of hyperthermia to neoadjuvant therapy in patients with locally advanced breast cancer. Int J Hyperthermia. 2010; 26(7): 625-37[DOI][PubMed]
  • 14. Wadajkar AS, Menon JU, Kadapure T, Tran RT, Yang J, Nguyen KT. Design and Application of Magnetic-based Theranostic Nanoparticle Systems. Recent Pat Biomed Eng. 2013; 6(1): 47-57[DOI][PubMed]
  • 15. O'Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 2004; 209(2): 171-6[DOI][PubMed]
  • 16. Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, et al. The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol. 2002; 43(1): 33-56[PubMed]
  • 17. Ali SZ, Taguchi A, Rosenberg H. Malignant hyperthermia. Best Pract Res Clin Anaesthesiol. 2003; 17(4): 519-33[PubMed]
  • 18. Raaphorst GP, LeBlanc JM, Li LF, Yang DP. Hyperthermia responses in cell lines with normal and deficient DNA repairs systems. J Therm Biol. 2005; 30(6): 478-84[DOI]
  • 19. Reinhold HS, Overgaard J. Hyperthermia in clinical oncology. Eur J Cancer. 1990; 26(8): 915-6[PubMed]
  • 20. Miller MW, Ziskin MC. Biological consequences of hyperthermia. Ultrasound Med Biol. 1989; 15(8): 707-22[PubMed]
  • 21. Emami B, Song CW. Physiological mechanisms in hyperthermia: a review. Int J Radiat Oncol Biol Phys. 1984; 10(2): 289-95[PubMed]
  • 22. Bae Y, Buresh RA, Williamson TP, Chen TH, Furgeson DY. Intelligent biosynthetic nanobiomaterials for hyperthermic combination chemotherapy and thermal drug targeting of HSP90 inhibitor geldanamycin. J Control Release. 2007; 122(1): 16-23[DOI][PubMed]
  • 23. Overgaard J, Suit HD. Time-temperature relationship th hyperthermic treatment of malignant and normal tissue in vivo. Cancer Res. 1979; 39(8): 3248-53[PubMed]
  • 24. Mackay JA, Chilkoti A. Temperature sensitive peptides: engineering hyperthermia-directed therapeutics. Int J Hyperthermia. 2008; 24(6): 483-95[DOI][PubMed]
  • 25. Krishnan S, Diagaradjane P, Cho SH. Nanoparticle-mediated thermal therapy: evolving strategies for prostate cancer therapy. Int J Hyperthermia. 2010; 26(8): 775-89[DOI][PubMed]
  • 26. Lasagna-Reeves C, Gonzalez-Romero D, Barria MA, Olmedo I, Clos A, Sadagopa Ramanujam VM, et al. Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochem Biophys Res Commun. 2010; 393(4): 649-55[DOI][PubMed]
  • 27. Krupka TM, Dremann D, Exner AA. Time and dose dependence of pluronic bioactivity in hyperthermia-induced tumor cell death. Exp Biol Med (Maywood). 2009; 234(1): 95-104[DOI][PubMed]
  • 28. Yang L, Zhang X, Ye M, Jiang J, Yang R, Fu T, et al. Aptamer-conjugated nanomaterials and their applications. Adv Drug Deliv Rev. 2011; 63(14-15): 1361-70[DOI][PubMed]
  • 29. Huang HC, Barua S, Kay DB, Rege K. Simultaneous enhancement of photothermal stability and gene delivery efficacy of gold nanorods using polyelectrolytes. ACS Nano. 2009; 3(10): 2941-52[DOI][PubMed]
  • 30. Alkilany AM, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res. 2010; 12(7): 2313-33[DOI][PubMed]
  • 31. Bhattacharya R, Mukherjee P. Biological properties of "naked" metal nanoparticles. Adv Drug Deliv Rev. 2008; 60(11): 1289-306[DOI][PubMed]
  • 32. Rahman WN, Bishara N, Ackerly T, He CF, Jackson P, Wong C, et al. Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomedicine. 2009; 5(2): 136-42[PubMed]
  • 33. Brun E, Duchambon P, Blouquit Y, Keller G, Sanche L, Sicard-Roselli C. Gold nanoparticles enhance the X-ray-induced degradation of human centrin 2 protein. Radiat Phys Chem. 2009; 78(3): 177-83
  • 34. Chang MY, Shiau AL, Chen YH, Chang CJ, Chen HH, Wu CL. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice. Cancer Sci. 2008; 99(7): 1479-84[DOI][PubMed]
  • 35. Ghahremani FH, Sazgarnia A, Bahreyni-Toosi MH, Rajabi O, Aledavood A. Efficacy of microwave hyperthermia and chemotherapy in the presence of gold nanoparticles: an in vitro study on osteosarcoma. Int J Hyperthermia. 2011; 27(6): 625-36[DOI][PubMed]
  • 36. Li H, Niederkorn JY, Neelam S, Alizadeh H. Downregulation of survivin expression enhances sensitivity of cultured uveal melanoma cells to cisplatin treatment. Exp Eye Res. 2006; 83(1): 176-82[DOI][PubMed]
  • 37. Lu W, Singh AK, Khan SA, Senapati D, Yu H, Ray PC. Gold nano-popcorn-based targeted diagnosis, nanotherapy treatment, and in situ monitoring of photothermal therapy response of prostate cancer cells using surface-enhanced Raman spectroscopy. J Am Chem Soc. 2010; 132(51): 18103-14[DOI][PubMed]
  • 38. Xu H, Liu C, Mei J, Yao C, Wang S, Wang J, et al. Effects of light irradiation upon photodynamic therapy based on 5-aminolevulinic acid-gold nanoparticle conjugates in K562 cells via singlet oxygen generation. Int J Nanomedicine. 2012; 7: 5029-38[DOI][PubMed]
  • 39. Gormley AJ, Greish K, Ray A, Robinson R, Gustafson JA, Ghandehari H. Gold nanorod mediated plasmonic photothermal therapy: a tool to enhance macromolecular delivery. Int J Pharm. 2011; 415(1-2): 315-8[DOI][PubMed]
  • 40. Negussie AH, Yarmolenko PS, Partanen A, Ranjan A, Jacobs G, Woods D, et al. Formulation and characterisation of magnetic resonance imageable thermally sensitive liposomes for use with magnetic resonance-guided high intensity focused ultrasound. Int J Hyperthermia. 2011; 27(2): 140-55[DOI][PubMed]
  • 41. Faraji AH, Wipf P. Nanoparticles in cellular drug delivery. Bioorg Med Chem. 2009; 17(8): 2950-62[DOI][PubMed]
  • 42. Lu W, Xiong C, Zhang G, Huang Q, Zhang R, Zhang JZ, et al. Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres. Clin Cancer Res. 2009; 15(3): 876-86[DOI][PubMed]
  • 43. Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev. 2009; 61(6): 428-37[DOI][PubMed]
  • 44. Hartig SM, Greene RR, Carlesso G, Higginbotham JN, Khan WN, Prokop A, et al. Kinetic analysis of nanoparticulate polyelectrolyte complex interactions with endothelial cells. Biomaterials. 2007; 28(26): 3843-55[DOI][PubMed]
  • 45. Chen YS, Hung YC, Liau I, Huang GS. Assessment of the In Vivo Toxicity of Gold Nanoparticles. Nanoscale Res Lett. 2009; 4(8): 858-64[DOI][PubMed]
  • 46. Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML. Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev. 2009; 61(6): 457-66[DOI][PubMed]
  • 47. Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Accounts Chem Res . 2008; 41(12): 1721-30
  • 48. van der Heijden AG, Kiemeney LA, Gofrit ON, Nativ O, Sidi A, Leib Z, et al. Preliminary European results of local microwave hyperthermia and chemotherapy treatment in intermediate or high risk superficial transitional cell carcinoma of the bladder. Eur Urol. 2004; 46(1): 65-71[DOI][PubMed]
  • 49. Gabano E, Colangelo D, Ghezzi AR, Osella D. The influence of temperature on antiproliferative effects, cellular uptake and DNA platination of the clinically employed Pt(II)-drugs. J Inorg Biochem. 2008; 102(4): 629-35[DOI][PubMed]
  • 50. Trieb K, Blahovec H, Kubista B. Effects of hyperthermia on heat shock protein expression, alkaline phosphatase activity and proliferation in human osteosarcoma cells. Cell Biochem Funct. 2007; 25(6): 669-72[DOI][PubMed]
  • 51. Hauck ML, Zalutsky MR. The effects of local hyperthermia on the catabolism of a radioiodinated chimeric monoclonal antibody. Clin Cancer Res. 1998; 4(9): 2071-7[PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments