International Journal of Cancer Management

Published by: Shiraz University of Medical Sciences

In Silico Data Mining of Single Nucleotide Polymorphisms in EZH2 and Their Role in Cancer

Trupti N. Patel 1 , * , Richa Vasan 2 , Manjari Trivedi 2 , Manali Chakraborty 3 and Priyanjali Bhattacharya 3
Authors Information
1 Department of Medical Biotechnology, Vellore Institute of Technology, Vellore, India
2 School of Medical, Veterinary and Life Sciences (MVLS), University of Glasgow, Scotland, United Kingdom
3 Department of Biomedical Sciences, Vellore Institute of Technology, Vellore, India
Article information
  • International Journal of Cancer Management: February 2018, 11 (2); e5430
  • Published Online: September 30, 2017
  • Article Type: Research Article
  • Received: January 20, 2016
  • Revised: July 18, 2017
  • Accepted: August 29, 2017
  • DOI: 10.5812/ijcm.5430

To Cite: Patel T N, Vasan R, Trivedi M, Chakraborty M, Bhattacharya P. et al. In Silico Data Mining of Single Nucleotide Polymorphisms in EZH2 and Their Role in Cancer, Int J Cancer Manag. 2018 ;11(2):e5430. doi: 10.5812/ijcm.5430.

Abstract
Copyright © 2017, Cancer Research Center (CRC), Shahid Beheshti University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Methods
3. Results
4. Discussion
5. Conclusions
Acknowledgements
Footnotes
References
  • 1. Morey L, Helin K. Polycomb group protein-mediated repression of transcription. Trends Biochem Sci. 2010;35(6):323-32. doi: 10.1016/j.tibs.2010.02.009. [PubMed: 20346678].
  • 2. Simon JA, Kingston RE. Mechanisms of polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol. 2009;10(10):697-708. doi: 10.1038/nrm2763. [PubMed: 19738629].
  • 3. Volkel P, Angrand PO. The control of histone lysine methylation in epigenetic regulation. Biochimie. 2007;89(1):1-20. doi: 10.1016/j.biochi.2006.07.009. [PubMed: 16919862].
  • 4. Muller J, Hart CM, Francis NJ, Vargas ML, Sengupta A, Wild B, et al. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell. 2002;111(2):197-208. [PubMed: 12408864].
  • 5. Chase A, Cross NC. Aberrations of EZH2 in cancer. Clin Cancer Res. 2011;17(9):2613-8. doi: 10.1158/1078-0432.CCR-10-2156. [PubMed: 21367748].
  • 6. Rhodes S, Copland M, Hopcroft L, Sayeski P, Wheadon H. Identification of JAK2 dependent transcriptional regulators in CML. Exp Hematol. 2013;41(8). S47.
  • 7. Suva ML, Riggi N, Janiszewska M, Radovanovic I, Provero P, Stehle JC, et al. EZH2 is essential for glioblastoma cancer stem cell maintenance. Cancer Res. 2009;69(24):9211-8. doi: 10.1158/0008-5472.CAN-09-1622. [PubMed: 19934320].
  • 8. Chang CJ, Yang JY, Xia W, Chen CT, Xie X, Chao CH, et al. EZH2 promotes expansion of breast tumor initiating cells through activation of RAF1-beta-catenin signaling. Cancer Cell. 2011;19(1):86-100. doi: 10.1016/j.ccr.2010.10.035. [PubMed: 21215703].
  • 9. Lee J, Son MJ, Woolard K, Donin NM, Li A, Cheng CH, et al. Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell. 2008;13(1):69-80. doi: 10.1016/j.ccr.2007.12.005. [PubMed: 18167341].
  • 10. Sauvageau M, Sauvageau G. Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer. Cell Stem Cell. 2010;7(3):299-313. doi: 10.1016/j.stem.2010.08.002. [PubMed: 20804967].
  • 11. Saramaki OR, Tammela TL, Martikainen PM, Vessella RL, Visakorpi T. The gene for polycomb group protein enhancer of zeste homolog 2 (EZH2) is amplified in late-stage prostate cancer. Genes Chromosomes Cancer. 2006;45(7):639-45. doi: 10.1002/gcc.20327. [PubMed: 16575874].
  • 12. Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA, et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci U S A. 2003;100(20):11606-11. doi: 10.1073/pnas.1933744100. [PubMed: 14500907].
  • 13. Nikoloski G, Langemeijer SM, Kuiper RP, Knops R, Massop M, Tonnissen ER, et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet. 2010;42(8):665-7. doi: 10.1038/ng.620. [PubMed: 20601954].
  • 14. Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV, et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet. 2010;42(8):722-6. doi: 10.1038/ng.621. [PubMed: 20601953].
  • 15. Brecqueville M, Cervera N, Adelaide J, Rey J, Carbuccia N, Chaffanet M, et al. Mutations and deletions of the SUZ12 polycomb gene in myeloproliferative neoplasms. Blood Cancer J. 2011;1(8). e33. doi: 10.1038/bcj.2011.31. [PubMed: 22829192].
  • 16. Mallen-St Clair J, Soydaner-Azeloglu R, Lee KE, Taylor L, Livanos A, Pylayeva-Gupta Y, et al. EZH2 couples pancreatic regeneration to neoplastic progression. Genes Dev. 2012;26(5):439-44. doi: 10.1101/gad.181800.111. [PubMed: 22391448].
  • 17. Simon C, Chagraoui J, Krosl J, Gendron P, Wilhelm B, Lemieux S, et al. A key role for EZH2 and associated genes in mouse and human adult T-cell acute leukemia. Genes Dev. 2012;26(7):651-6. doi: 10.1101/gad.186411.111. [PubMed: 22431509].
  • 18. Dillon SC, Zhang X, Trievel RC, Cheng X. The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol. 2005;6(8):227. doi: 10.1186/gb-2005-6-8-227. [PubMed: 16086857].
  • 19. McCabe MT, Graves AP, Ganji G, Diaz E, Halsey WS, Jiang Y, et al. Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27). Proc Natl Acad Sci U S A. 2012;109(8):2989-94. doi: 10.1073/pnas.1116418109. [PubMed: 22323599].
  • 20. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248-9. doi: 10.1038/nmeth0410-248. [PubMed: 20354512].
  • 21. Mi H, Guo N, Kejariwal A, Thomas PD. PANTHER version 6: protein sequence and function evolution data with expanded representation of biological pathways. Nucleic Acids Res. 2007;35(Database issue):D247-52. doi: 10.1093/nar/gkl869. [PubMed: 17130144].
  • 22. Capriotti E, Calabrese R, Casadio R. Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics. 2006;22(22):2729-34. doi: 10.1093/bioinformatics/btl423. [PubMed: 16895930].
  • 23. Calabrese R, Capriotti E, Fariselli P, Martelli PL, Casadio R. Functional annotations improve the predictive score of human disease-related mutations in proteins. Hum Mutat. 2009;30(8):1237-44. doi: 10.1002/humu.21047. [PubMed: 19514061].
  • 24. Capriotti E, Fariselli P, Rossi I, Casadio R. A three-state prediction of single point mutations on protein stability changes. BMC Bioinformatics. 2008;9 Suppl 2. S6. doi: 10.1186/1471-2105-9-S2-S6. [PubMed: 18387208].
  • 25. Ng PC, Henikoff S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31(13):3812-4.
  • 26. Cheng J, Randall A, Baldi P. Prediction of protein stability changes for single-site mutations using support vector machines. Proteins Structure Function Bioinformatics. 2005;62(4):1125-32. doi: 10.1002/prot.20810.
  • 27. Bromberg Y, Yachdav G, Rost B. SNAP predicts effect of mutations on protein function. Bioinformatics. 2008;24(20):2397-8. doi: 10.1093/bioinformatics/btn435. [PubMed: 18757876].
  • 28. Teng S, Srivastava AK, Wang L. Sequence feature-based prediction of protein stability changes upon amino acid substitutions. BMC Genomics. 2010;11 Suppl 2. S5. doi: 10.1186/1471-2164-11-S2-S5. [PubMed: 21047386].
  • 29. Acharya V, Nagarajaram HA. Hansa: an automated method for discriminating disease and neutral human nsSNPs. Hum Mutat. 2012;33(2):332-7. doi: 10.1002/humu.21642. [PubMed: 22045683].
  • 30. Vacic V, Oldfield CJ, Mohan A, Radivojac P, Cortese MS, Uversky VN, et al. Characterization of molecular recognition features, MoRFs, and their binding partners. J Proteome Res. 2007;6(6):2351-66. doi: 10.1021/pr0701411. [PubMed: 17488107].
  • 31. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982;157(1):105-32. [PubMed: 7108955].
  • 32. Thusberg J. Molecular effects of missense mutations-Bioinformatics analysis of genetic defects. Tampere University Press; 2010.
  • 33. Barnes MR, Ian GC. Amino acid properties and consequences on substitutions. In: Barnes MR, Ian GC, editors. Bioinformatics for Geneticists. Germany: John Wiley and Sons Ltd; 2003. p. 289-314.
  • 34. Dahiyat BI. In silico design for protein stabilization. Curr Opin Biotechnol. 1999;10(4):387-90. doi: 10.1016/S0958-1669(99)80070-6. [PubMed: 10449321].
  • 35. Abkevich VI, Gutin AM, Shakhnovich EI. Impact of local and non-local interactions on thermodynamics and kinetics of protein folding. J Mol Biol. 1995;252(4):460-71. doi: 10.1006/jmbi.1995.0511. [PubMed: 7563065].
  • 36. Dolnik A, Engelmann JC, Scharfenberger-Schmeer M, Mauch J, Kelkenberg-Schade S, Haldemann B, et al. Commonly altered genomic regions in acute myeloid leukemia are enriched for somatic mutations involved in chromatin remodeling and splicing. Blood. 2012;120(18):e83-92. doi: 10.1182/blood-2011-12-401471. [PubMed: 22976956].
  • 37. Sahasrabuddhe AA, Chen X, Chung F, Velusamy T, Lim MS, Elenitoba-Johnson KS. Oncogenic Y641 mutations in EZH2 prevent Jak2/beta-TrCP-mediated degradation. Oncogene. 2015;34(4):445-54. doi: 10.1038/onc.2013.571. [PubMed: 24469040].
  • 38. Tan JZ, Yan Y, Wang XX, Jiang Y, Xu HE. EZH2: biology, disease, and structure-based drug discovery. Acta Pharmacol Sin. 2014;35(2):161-74. doi: 10.1038/aps.2013.161. [PubMed: 24362326].
  • 39. Wigle TJ, Knutson SK, Jin L, Kuntz KW, Pollock RM, Richon VM, et al. The Y641C mutation of EZH2 alters substrate specificity for histone H3 lysine 27 methylation states. FEBS Lett. 2011;585(19):3011-4. doi: 10.1016/j.febslet.2011.08.018. [PubMed: 21856302].
  • 40. Yap DB, Chu J, Berg T, Schapira M, Cheng SW, Moradian A, et al. Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood. 2011;117(8):2451-9. doi: 10.1182/blood-2010-11-321208. [PubMed: 21190999].
  • 41. Grossmann V, Bacher U, Kohlmann A, Artusi V, Klein HU, Dugas M, et al. EZH2 mutations and their association with PICALM-MLLT10 positive acute leukaemia. Br J Haematol. 2012;157(3):387-90. doi: 10.1111/j.1365-2141.2011.08986.x. [PubMed: 22235851].
  • 42. Serrano L, Neira JL, Sancho J, Fersht AR. Effect of alanine versus glycine in alpha-helices on protein stability. Nature. 1992;356(6368):453-5. doi: 10.1038/356453a0. [PubMed: 1557131].
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments