International Journal of Cancer Management

Published by: Kowsar

Nanocarriers Usage for Drug Delivery in Cancer Therapy

Hadi Khodabandehloo 1 , Hamid Zahednasab 2 and Asghar Ashrafi Hafez 3 , *
Authors Information
1 Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
2 Institute of Biochemistry and Biophysics, University of Tehran, Tehran, IR Iran
3 Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
Article information
  • Iranian Journal of Cancer Prevention: April 30, 2016, 9 (2); e3966
  • Published Online: April 24, 2016
  • Article Type: Review Article
  • Received: August 31, 2015
  • Revised: October 12, 2015
  • Accepted: March 14, 2016
  • DOI: 10.17795/ijcp-3966

To Cite: Khodabandehloo H, Zahednasab H, Ashrafi Hafez A. Nanocarriers Usage for Drug Delivery in Cancer Therapy, Int J Cancer Manag. 2016 ; 9(2):e3966. doi: 10.17795/ijcp-3966.

Abstract
Copyright © 2016, Iranian Journal of Cancer Prevention. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Context
2. Evidence Acquisition
3. Results
4. Conclusions
Acknowledgements
Footnotes
References
  • 1. Cho K, Wang X, Nie S, Chen ZG, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res. 2008; 14(5): 1310-6[DOI][PubMed]
  • 2. Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer. 2002; 2(10): 750-63[DOI][PubMed]
  • 3. Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul. 2001; 41: 189-207[PubMed]
  • 4. Gelperina S, Kisich K, Iseman MD, Heifets L. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med. 2005; 172(12): 1487-90[DOI][PubMed]
  • 5. Rawat M, Singh D, Saraf S, Saraf S. Nanocarriers: promising vehicle for bioactive drugs. Biol Pharm Bull. 2006; 29(9): 1790-8[PubMed]
  • 6. Yavari K, Khodabandehloo H, Taghikhani M, Mazidi M, Kalantari B, Asl RS, et al. Development of 166Ho Poly Lactic Acid Microspheres for Radiosynovectomy. J Pharam Pharmacol. 2013; 1: 25-35
  • 7. Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery. J Pharm Sci. 2003; 92(7): 1343-55[DOI][PubMed]
  • 8. Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000; 44(1): 235-49[PubMed]
  • 9. Yokoyama M. Polymeric micelles as a new drug carrier system and their required considerations for clinical trials. Expert Opin Drug Deliv. 2010; 7(2): 145-58[DOI][PubMed]
  • 10. Yokoyama M. Clinical Applications of Polymeric Micelle Carrier Systems in Chemotherapy and Image Diagnosis of Solid Tumors. J Expe Clin Med. 2011; 3(4): 151-8[DOI]
  • 11. Svenson S, Tomalia DA. Dendrimers in biomedical applications--reflections on the field. Adv Drug Deliv Rev. 2005; 57(15): 2106-29[DOI][PubMed]
  • 12. Roberts JC, Bhalgat MK, Zera RT. Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst dendrimers. J Biomed Mater Res. 1996; 30(1): 53-65[DOI][PubMed]
  • 13. Patri AK, Majoros IJ, Baker JR. Dendritic polymer macromolecular carriers for drug delivery. Curr Opin Chem Biol. 2002; 6(4): 466-71[PubMed]
  • 14. Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H, Weener JW, et al. Dendrimers. J Control Release. 2000; 65(1-2): 133-48[DOI]
  • 15. Klajnert B, Bryszewska M. Dendrimers: properties and applications. Acta Biochim Pol. 2001; 48(1): 199-208[PubMed]
  • 16. Fischer M, Vögtle F. Dendrimers: from design to application—a progress report. Angewandte Chemie Int Edit. 1999; 38(7): 884-905
  • 17. Sigal GB, Mammen M, Dahmann G, Whitesides GM. Polyacrylamides Bearing Pendant α-Sialoside Groups Strongly Inhibit Agglutination of Erythrocytes by Influenza Virus:  The Strong Inhibition Reflects Enhanced Binding through Cooperative Polyvalent Interactions. J Am Chem Soc. 1996; 118(16): 3789-800[DOI]
  • 18. Barth RF, Adams DM, Soloway AH, Alam F, Darby MV. Boronated starburst dendrimer-monoclonal antibody immunoconjugates: evaluation as a potential delivery system for neutron capture therapy. Bioconjug Chem. 1994; 5(1): 58-66[PubMed]
  • 19. Haensler J, Szoka FJ. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug Chem. 1993; 4(5): 372-9[PubMed]
  • 20. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, et al. Photodynamic Therapy. JNCI J Nation Cancer Inst. 1998; 90(12): 889-905[DOI]
  • 21. Bawarski WE, Chidlowsky E, Bharali DJ, Mousa SA. Emerging nanopharmaceuticals. Nanomed Nanotechnol Biol Med. 2008; 4(4): 273-82[DOI]
  • 22. Tros de Ilarduya C, Sun Y, Duzgunes N. Gene delivery by lipoplexes and polyplexes. Eur J Pharm Sci. 2010; 40(3): 159-70[DOI][PubMed]
  • 23. Chang HI, Yeh MK. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int J Nanomedicine. 2012; 7: 49-60[DOI][PubMed]
  • 24. Fan Y, Zhang Q. Development of liposomal formulations: From concept to clinical investigations. Asian J Pharm Sci. 2013; 8(2): 81-7[DOI]
  • 25. Ming-Kung Y. Clinically-Proven Liposome-Based Drug Delivery: Formulation, Characterization and Therapeutic Efficacy. 2012;
  • 26. Wong HL, Bendayan R, Rauth AM, Li Y, Wu XY. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv Drug Deliv Rev. 2007; 59(6): 491-504[DOI][PubMed]
  • 27. Kaur T, Slavcev R. Novel Gene Therapy Approaches. 2013;
  • 28. Xu ZP, Zeng QH, Lu GQ, Yu A. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Engin Sci. 2006; 61(3): 1027-40
  • 29. Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev. 2008; 60(11): 1307-15[DOI][PubMed]
  • 30. Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 2005; 1(3): 325-7[DOI][PubMed]
  • 31. Myllynen PK, Loughran MJ, Howard CV, Sormunen R, Walsh AA, Vahakangas KH. Kinetics of gold nanoparticles in the human placenta. Reprod Toxicol. 2008; 26(2): 130-7[DOI][PubMed]
  • 32. Results of a completed phase I clinical trial of CYT-6091: A pegylated colloidal gold-TNF nanomedicine. ASCO annual meeting proceedings. : 3586
  • 33. McBain SC, Yiu HH, Dobson J. Magnetic nanoparticles for gene and drug delivery. Int J Nanomedicine. 2008; 3(2): 169-80[PubMed]
  • 34. Lubbe AS, Bergemann C, Riess H, Schriever F, Reichardt P, Possinger K, et al. Clinical experiences with magnetic drug targeting: a phase I study with 4'-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res. 1996; 56(20): 4686-93[PubMed]
  • 35. Ito A, Shinkai M, Honda H, Kobayashi T. Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng. 2005; 100(1): 1-11[DOI][PubMed]
  • 36. Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release. 2008; 132(3): 171-83[DOI][PubMed]
  • 37. Hawkins MJ, Soon-Shiong P, Desai N. Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev. 2008; 60(8): 876-85[DOI][PubMed]
  • 38. Haley B, Frenkel E. Nanoparticles for drug delivery in cancer treatment. Urol Oncol. 2008; 26(1): 57-64[DOI][PubMed]
  • 39. Singh P, Prasuhn D, Yeh RM, Destito G, Rae CS, Osborn K, et al. Bio-distribution, toxicity and pathology of cowpea mosaic virus nanoparticles in vivo. J Control Release. 2007; 120(1-2): 41-50[DOI][PubMed]
  • 40. Agirrezabala X, Velazquez-Muriel JA, Gomez-Puertas P, Scheres SH, Carazo JM, Carrascosa JL. Quasi-atomic model of bacteriophage t7 procapsid shell: insights into the structure and evolution of a basic fold. Structure. 2007; 15(4): 461-72[DOI][PubMed]
  • 41. Sherman MB, Guenther RH, Tama F, Sit TL, Brooks CL, Mikhailov AM, et al. Removal of divalent cations induces structural transitions in red clover necrotic mosaic virus, revealing a potential mechanism for RNA release. J Virol. 2006; 80(21): 10395-406[DOI][PubMed]
  • 42. Pokorski JK, Steinmetz NF. The art of engineering viral nanoparticles. Mol Pharm. 2011; 8(1): 29-43[DOI][PubMed]
  • 43. Lacerda L, Bianco A, Prato M, Kostarelos K. Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv Drug Deliv Rev. 2006; 58(14): 1460-70[DOI][PubMed]
  • 44. Bianco A, Kostarelos K, Partidos CD, Prato M. Biomedical applications of functionalised carbon nanotubes. Chem Commun (Camb). 2005; (5): 571-7[DOI][PubMed]
  • 45. Yan J, Xue F, Chen H, Wu X, Zhang H, Chen G, et al. A multi-center study of using carbon nanoparticles to track lymph node metastasis in T1-2 colorectal cancer. Surg Endosc. 2014; 28(12): 3315-21[DOI][PubMed]
  • 46. Gaumet M, Vargas A, Gurny R, Delie F. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm. 2008; 69(1): 1-9[DOI][PubMed]
  • 47. Igarashi E. Factors affecting toxicity and efficacy of polymeric nanomedicines. Toxicol Appl Pharmacol. 2008; 229(1): 121-34[DOI][PubMed]
  • 48. Owens D3, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006; 307(1): 93-102[DOI][PubMed]
  • 49. Hoffman AS. The origins and evolution of "controlled" drug delivery systems. J Control Release. 2008; 132(3): 153-63[DOI][PubMed]
  • 50. Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001; 53(2): 283-318[PubMed]
  • 51. Mohanraj VJ, Chen Y. Nanoparticles-a review. Trop J Pharm Res. 2007; 5(1): 561-73
  • 52. Harris JM, Martin NE, Modi M. Pegylation: a novel process for modifying pharmacokinetics. Clin Pharmacokinet. 2001; 40(7): 539-51[DOI][PubMed]
  • 53. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000; 407(6801): 249-57[DOI][PubMed]
  • 54. Pelicano H, Martin DS, Xu RH, Huang P. Glycolysis inhibition for anticancer treatment. Oncogene. 2006; 25(34): 4633-46[DOI][PubMed]
  • 55. Yatvin MB, Kreutz W, Horwitz BA, Shinitzky M. pH-sensitive liposomes: possible clinical implications. Science. 1980; 210(4475): 1253-5[PubMed]
  • 56. Abhilash M. Potential applications of Nanoparticles. Int J Pharm Bio Sci. 2010; 1(1): 1-12
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments