International Journal of Cancer Management

Published by: Kowsar

Combined Application of Phosphoinositide 3-Kinase and Mammalian Target of Rapamycin Inhibitors Suppresses Cell Growth and Promotes Apoptosis in Human Lung Cancer Cell Lines

Marzieh Badinloo 1 , 2 , 3 and Saeed Esmaeili Mahani 2 , *
Authors Information
1 Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences. Kerman, IR Iran
2 Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman. Kerman, IR Iran
3 Laboratory of Molecular Neuroscience, Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, IR Iran
Article information
  • Iranian Journal of Cancer Prevention: October 2016, 9 (5); e3433
  • Published Online: September 18, 2016
  • Article Type: Research Article
  • Received: July 6, 2015
  • Revised: November 26, 2015
  • Accepted: September 10, 2016
  • DOI: 10.17795/ijcp-3433

To Cite: Badinloo M, Esmaeili Mahani S. Combined Application of Phosphoinositide 3-Kinase and Mammalian Target of Rapamycin Inhibitors Suppresses Cell Growth and Promotes Apoptosis in Human Lung Cancer Cell Lines, Int J Cancer Manag. 2016 ; 9(5):e3433. doi: 10.17795/ijcp-3433.

Copyright © 2016, Iranian Journal of Cancer Prevention. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
  • 1. Hubers AJ, Prinsen CF, Sozzi G, Witte BI, Thunnissen E. Molecular sputum analysis for the diagnosis of lung cancer. Br J Cancer. 2013; 109(3): 530-7[DOI][PubMed]
  • 2. Marinov M, Fischer B, Arcaro A. Targeting mTOR signaling in lung cancer. Crit Rev Oncol Hematol. 2007; 63(2): 172-82[DOI][PubMed]
  • 3. Willers H, Azzoli CG, Santivasi WL, Xia F. Basic mechanisms of therapeutic resistance to radiation and chemotherapy in lung cancer. Cancer J. 2013; 19(3): 200-7[DOI][PubMed]
  • 4. Nakata A, Gotoh N. Recent understanding of the molecular mechanisms for the efficacy and resistance of EGF receptor-specific tyrosine kinase inhibitors in non-small cell lung cancer. Expert Opin Ther Targets. 2012; 16(8): 771-81[DOI][PubMed]
  • 5. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004; 18(16): 1926-45[DOI][PubMed]
  • 6. Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature. 2006; 441(7092): 424-30[DOI][PubMed]
  • 7. Gera JF, Mellinghoff IK, Shi Y, Rettig MB, Tran C, Hsu JH, et al. AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression. J Biol Chem. 2004; 279(4): 2737-46[DOI][PubMed]
  • 8. Vadlakonda L, Pasupuleti M, Pallu R. Role of PI3K-AKT-mTOR and Wnt Signaling Pathways in Transition of G1-S Phase of Cell Cycle in Cancer Cells. Front Oncol. 2013; 3: 85[DOI][PubMed]
  • 9. Trigka EA, Levidou G, Saetta AA, Chatziandreou I, Tomos P, Thalassinos N, et al. A detailed immunohistochemical analysis of the PI3K/AKT/mTOR pathway in lung cancer: correlation with PIK3CA, AKT1, K-RAS or PTEN mutational status and clinicopathological features. Oncol Rep. 2013; 30(2): 623-36[DOI][PubMed]
  • 10. Burris H3. Overcoming acquired resistance to anticancer therapy: focus on the PI3K/AKT/mTOR pathway. Cancer Chemother Pharmacol. 2013; 71(4): 829-42[DOI][PubMed]
  • 11. Gong C, Liao H, Wang J, Lin Y, Qi J, Qin L, et al. LY294002 induces G0/G1 cell cycle arrest and apoptosis of cancer stem-like cells from human osteosarcoma via down-regulation of PI3K activity. Asian Pac J Cancer Prev. 2012; 13(7): 3103-7[PubMed]
  • 12. Badinloo M, Esmaeili-Mahani S. Phosphatidylinositol 3-kinases inhibitor LY294002 potentiates the cytotoxic effects of doxorubicin, vincristine, and etoposide in a panel of cancer cell lines. Fundam Clin Pharmacol. 2014; 28(4): 414-22[DOI][PubMed]
  • 13. O'Donnell A, Faivre S, Burris H3, Rea D, Papadimitrakopoulou V, Shand N, et al. Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. J Clin Oncol. 2008; 26(10): 1588-95[DOI][PubMed]
  • 14. Konstantinidou G, Bey EA, Rabellino A, Schuster K, Maira MS, Gazdar AF, et al. Dual phosphoinositide 3-kinase/mammalian target of rapamycin blockade is an effective radiosensitizing strategy for the treatment of non-small cell lung cancer harboring K-RAS mutations. Cancer Res. 2009; 69(19): 7644-52[DOI][PubMed]
  • 15. Zito CR, Jilaveanu LB, Anagnostou V, Rimm D, Bepler G, Maira SM, et al. Multi-level targeting of the phosphatidylinositol-3-kinase pathway in non-small cell lung cancer cells. PLoS One. 2012; 7(2): 31331[DOI][PubMed]
  • 16. Pasban-Aliabadi H, Esmaeili-Mahani S, Sheibani V, Abbasnejad M, Mehdizadeh A, Yaghoobi MM. Inhibition of 6-hydroxydopamine-induced PC12 cell apoptosis by olive (Olea europaea L.) leaf extract is performed by its main component oleuropein. Rejuvenation Res. 2013; 16(2): 134-42[DOI][PubMed]
  • 17. Gustafson AM, Soldi R, Anderlind C, Scholand MB, Qian J, Zhang X, et al. Airway PI3K pathway activation is an early and reversible event in lung cancer development. Sci Transl Med. 2010; 2(26): 26ra25[DOI][PubMed]
  • 18. Martinez-Marti A, Felip E. PI3K Pathway in NSCLC. Front Oncol. 2011; 1: 55[DOI][PubMed]
  • 19. Spoerke JM, O'Brien C, Huw L, Koeppen H, Fridlyand J, Brachmann RK, et al. Phosphoinositide 3-kinase (PI3K) pathway alterations are associated with histologic subtypes and are predictive of sensitivity to PI3K inhibitors in lung cancer preclinical models. Clin Cancer Res. 2012; 18(24): 6771-83[DOI][PubMed]
  • 20. Schettino C, Bareschino MA, Sacco PC, Maione P, Rossi A, Casaluce F, et al. New molecular targets in the treatment of NSCLC. Curr Pharm Des. 2013; 19(30): 5333-43[PubMed]
  • 21. Breslin EM, White PC, Shore AM, Clement M, Brennan P. LY294002 and rapamycin co-operate to inhibit T-cell proliferation. Br J Pharmacol. 2005; 144(6): 791-800[DOI][PubMed]
  • 22. Werzowa J, Cejka D, Fuereder T, Dekrout B, Thallinger C, Pehamberger H, et al. Suppression of mTOR complex 2-dependent AKT phosphorylation in melanoma cells by combined treatment with rapamycin and LY294002. Br J Dermatol. 2009; 160(5): 955-64[DOI][PubMed]
  • 23. Elfiky AA, Aziz SA, Conrad PJ, Siddiqui S, Hackl W, Maira M, et al. Characterization and targeting of phosphatidylinositol-3 kinase (PI3K) and mammalian target of rapamycin (mTOR) in renal cell cancer. J Transl Med. 2011; 9: 133[DOI][PubMed]
  • 24. Aziz SA, Jilaveanu LB, Zito C, Camp RL, Rimm DL, Conrad P, et al. Vertical targeting of the phosphatidylinositol-3 kinase pathway as a strategy for treating melanoma. Clin Cancer Res. 2010; 16(24): 6029-39[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments