International Journal of Cancer Management

Published by: Kowsar

17β-Estradiol Stimulates Generation of Reactive Species Oxygen and Nitric Oxide in Ovarian Adenocarcinoma Cells (OVCAR 3)

Jafar Maleki 1 , Mitra Nourbakhsh 1 , 2 , Mohammad Shabani 1 , * , Mohsen Korani 3 , Seyed Manuchehr Nourazarian 4 , Mohammad Reza Ostadali Dahaghi 5 and Mohamad Hossein Moghadasi 6
Authors Information
1 Department of Biochemistry, Iran University of Medical Sciences, Tehran, IR Iran
2 Metabolic Disorders Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, IR Iran
3 Department of Biochemistry, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
4 Department of Laboratory Sciences, Tabriz University of Medical Sciences, Tabriz, IR Iran
5 Hematology-Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, IR Iran
6 Departement of Laboratory, Labafi Nedjad Hospital, Social Security Organization, Tehran, IR Iran
Article information
  • Iranian Journal of Cancer Prevention: May 28, 2015, 8 (3); e2332
  • Published Online: May 22, 2015
  • Article Type: Research Article
  • Received: January 3, 2015
  • Revised: January 19, 2015
  • Accepted: February 3, 2015
  • DOI: 10.17795/ijcp2332

To Cite: Maleki J, Nourbakhsh M, Shabani M, Korani M, Nourazarian S M, et al. 17β-Estradiol Stimulates Generation of Reactive Species Oxygen and Nitric Oxide in Ovarian Adenocarcinoma Cells (OVCAR 3), Int J Cancer Manag. 2015 ; 8(3):e2332. doi: 10.17795/ijcp2332.

Abstract
Copyright © 2015, Iranian Journal of Cancer Prevention.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
Footnote
References
  • 1. Cunat S, Hoffmann P, Pujol P. Estrogens and epithelial ovarian cancer. Gynecol Oncol. 2004; 94(1): 25-32[DOI][PubMed]
  • 2. Blomquist CH, Leung BS, Zhang R, Zhu Y, Chang PM. Properties and regulation of 17 beta-hydroxysteroid oxidoreductase of OVCAR-3, CAOV-3, and A431 cells: effects of epidermal growth factor, estradiol, and progesterone. J Cell Biochem. 1995; 59(4): 409-17[DOI][PubMed]
  • 3. Okoh V, Deoraj A, Roy D. Estrogen-induced reactive oxygen species-mediated signalings contribute to breast cancer. Biochim Biophys Acta. 2011; 1815(1): 115-33[DOI][PubMed]
  • 4. Zhu BT, Conney AH. Is 2-methoxyestradiol an endogenous estrogen metabolite that inhibits mammary carcinogenesis? Cancer Res. 1998; 58(11): 2269-77[PubMed]
  • 5. Blomquist CH, Bonenfant M, McGinley DM, Posalaky Z, Lakatua DJ, Tuli-Puri S, et al. Androgenic and estrogenic 17beta-hydroxysteroid dehydrogenase/17-ketosteroid reductase in human ovarian epithelial tumors: evidence for the type 1, 2 and 5 isoforms. J Steroid Biochem Mol Biol. 2002; 81(4-5): 343-51[PubMed]
  • 6. Nourbakhsh M, Golestani A, Zahrai M, Modarressi MH, Malekpour Z, Karami-Tehrani F. Androgens stimulate telomerase expression, activity and phosphorylation in ovarian adenocarcinoma cells. Mol Cell Endocrinol. 2010; 330(1-2): 10-6[DOI][PubMed]
  • 7. Wehling M, Losel R. Non-genomic steroid hormone effects: membrane or intracellular receptors? J Steroid Biochem Mol Biol. 2006; 102(1-5): 180-3[DOI][PubMed]
  • 8. Chen JQ, Yager JD, Russo J. Regulation of mitochondrial respiratory chain structure and function by estrogens/estrogen receptors and potential physiological/pathophysiological implications. Biochim Biophys Acta. 2005; 1746(1): 1-17[DOI][PubMed]
  • 9. Cavalieri E, Frenkel K, Liehr JG, Rogan E, Roy D. Estrogens as endogenous genotoxic agents--DNA adducts and mutations. J Natl Cancer Inst Monogr. 2000; (27): 75-93[PubMed]
  • 10. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007; 39(1): 44-84[DOI][PubMed]
  • 11. Wu WS. The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev. 2006; 25(4): 695-705[DOI][PubMed]
  • 12. Park SA, Na HK, Kim EH, Cha YN, Surh YJ. 4-hydroxyestradiol induces anchorage-independent growth of human mammary epithelial cells via activation of IkappaB kinase: potential role of reactive oxygen species. Cancer Res. 2009; 69(6): 2416-24[DOI][PubMed]
  • 13. Pavlović D, Đorđević V, Kocić G. Cross-talk” between oxidative stress and redox cell signaling. Med Biol. 2002; 2: 131-7
  • 14. Tamanini C, Basini G, Grasselli F, Trelli M. Nitric oxide and the ovary. J Animal Sci. 2003; 81(14 (suppl 2))-7
  • 15. Yucel AA, Gulen S, Dincer S, Yucel AE, Yetkin GI. Comparison of two different applications of the Griess method for nitric oxide measurement. J Exp Integrat Med. 2012; 2(2): 167-71
  • 16. Pelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist Updat. 2004; 7(2): 97-110[DOI][PubMed]
  • 17. Richter C, Gogvadze V, Laffranchi R, Schlapbach R, Schweizer M, Suter M, et al. Oxidants in mitochondria: from physiology to diseases. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 1995; 1271(1): 67-74
  • 18. Baliga R, Ueda N, Walker PD, Shah SV. Oxidant mechanisms in toxic acute renal failure. Drug Metab Rev. 1999; 31(4): 971-97[DOI][PubMed]
  • 19. Acharya A, Das I, Chandhok D, Saha T. Redox regulation in cancer: a double-edged sword with therapeutic potential. Oxid Med Cell Longev. 2010; 3(1): 23-34[DOI][PubMed]
  • 20. Kerksick C, Willoughby D. The antioxidant role of glutathione and N-acetyl-cysteine supplements and exercise-induced oxidative stress. J Int Soc Sports Nutr. 2005; 2: 38-44[DOI][PubMed]
  • 21. Schewe T. Molecular actions of ebselen--an antiinflammatory antioxidant. Gen Pharmacol. 1995; 26(6): 1153-69[PubMed]
  • 22. Schimmel M, Bauer G. Proapoptotic and redox state-related signaling of reactive oxygen species generated by transformed fibroblasts. Oncogene. 2002; 21(38): 5886-96[DOI][PubMed]
  • 23. Liu H, Nishitoh H, Ichijo H, Kyriakis JM. Activation of apoptosis signal-regulating kinase 1 (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1 inhibitor thioredoxin. Mol Cell Biol. 2000; 20(6): 2198-208[PubMed]
  • 24. Bai W, Oliveros-Saunders B, Wang Q, Acevedo-Duncan ME, Nicosia SV. Estrogen stimulation of ovarian surface epithelial cell proliferation. In Vitro Cell Dev Biol Anim. 2000; 36(10): 657-66[DOI][PubMed]
  • 25. Okoh VO, Felty Q, Parkash J, Poppiti R, Roy D. Reactive oxygen species via redox signaling to PI3K/AKT pathway contribute to the malignant growth of 4-hydroxy estradiol-transformed mammary epithelial cells. PLoS One. 2013; 8(2)[DOI][PubMed]
  • 26. Weiming XU, Liu LZ, Loizidou M, Ahmed M, Charles IG. The role of nitric oxide in cancer. Cell Res. 2002; 12(5): 311-20
  • 27. Anttila MA, Voutilainen K, Merivalo S, Saarikoski S, Kosma VM. Prognostic significance of iNOS in epithelial ovarian cancer. Gynecol Oncol. 2007; 105(1): 97-103[DOI][PubMed]
  • 28. Cho MM, Ziats NP, Pal D, Utian WH, Gorodeski GI. Estrogen modulates paracellular permeability of human endothelial cells by eNOS- and iNOS-related mechanisms. Am J Physiol. 1999; 276(2 Pt 1)-49[PubMed]
  • 29. Karpuzoglu E, Ahmed SA. Estrogen regulation of nitric oxide and inducible nitric oxide synthase (iNOS) in immune cells: implications for immunity, autoimmune diseases, and apoptosis. Nitric Oxide. 2006; 15(3): 177-86[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments