International Journal of Cancer Management

Published by: Kowsar

Association of ANRIL Gene Polymorphisms with Acute Myeloid Leukemia in an Iranian Population

Arezou Sayad 1 , Abbas Hajifathali 2 and Mohammad Taheri 1 , 3 , *
Authors Information
1 Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2 Taleghani Bone Marrow Transplantation Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3 Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Article information
  • International Journal of Cancer Management: October 2017, 10 (10); e11176
  • Published Online: October 28, 2017
  • Article Type: Research Article
  • Received: February 25, 2017
  • Revised: May 7, 2017
  • Accepted: October 25, 2017
  • DOI: 10.5812/ijcm.11176

How to Cite: Sayad A, Hajifathali A, Taheri M. Association of ANRIL Gene Polymorphisms with Acute Myeloid Leukemia in an Iranian Population, Int J Cancer Manag. 2017 ; 10(10):e11176. doi: 10.5812/ijcm.11176.

Copyright © 2017, Cancer Research Center (CRC), Shahid Beheshti University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Methods
3. Results
4. Discussion
  • 1. Deschler B, Lubbert M. Acute myeloid leukemia: epidemiology and etiology. Cancer. 2006;107(9):2099-107. doi: 10.1002/cncr.22233. [PubMed: 17019734].
  • 2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7-30. doi: 10.3322/caac.21332. [PubMed: 26742998].
  • 3. Cingeetham A, Vuree S, Dunna NR, Gorre M, Nanchari SR, Edathara PM, et al. Association of caspase9 promoter polymorphisms with the susceptibility of AML in south Indian subjects. Tumour Biol. 2014;35(9):8813-22. doi: 10.1007/s13277-014-2096-5. [PubMed: 24879622].
  • 4. Gil J, Peters G. Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nat Rev Mol Cell Biol. 2006;7(9):667-77. doi: 10.1038/nrm1987. [PubMed: 16921403].
  • 5. Engreitz JM, Haines JE, Munson G, Chen J, Perez EM, Kane M, et al. Neighborhood regulation by lncRNA promoters, transcription, and splicing. Bio Rxiv. 2016. doi: 10.1101/050948.
  • 6. Stacey SN, Sulem P, Masson G, Gudjonsson SA, Thorleifsson G, Jakobsdottir M, et al. New common variants affecting susceptibility to basal cell carcinoma. Nat Genet. 2009;41(8):909-14. doi: 10.1038/ng.412. [PubMed: 19578363].
  • 7. Turnbull C, Ahmed S, Morrison J, Pernet D, Renwick A, Maranian M, et al. Genome-wide association study identifies five new breast cancer susceptibility loci. Nat Genet. 2010;42(6):504-7. doi: 10.1038/ng.586. [PubMed: 20453838].
  • 8. Iacobucci I, Sazzini M, Garagnani P, Ferrari A, Boattini A, Lonetti A, et al. A polymorphism in the chromosome 9p21 ANRIL locus is associated to Philadelphia positive acute lymphoblastic leukemia. Leuk Res. 2011;35(8):1052-9. doi: 10.1016/j.leukres.2011.02.020. [PubMed: 21414664].
  • 9. Collins A. Primer1, primer design web service for tetra primer ARMS PCR. Open Bioinform J. 2012;6(1):55-8. doi: 10.2174/1875036201206010055.
  • 10. Kuo ML, den Besten W, Bertwistle D, Roussel MF, Sherr CJ. N-terminal polyubiquitination and degradation of the Arf tumor suppressor. Genes Dev. 2004;18(15):1862-74. doi: 10.1101/gad.1213904. [PubMed: 15289458].
  • 11. Hannon GJ, Beach D. p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature. 1994;371(6494):257-61. doi: 10.1038/371257a0. [PubMed: 8078588].
  • 12. Rayess H, Wang MB, Srivatsan ES. Cellular senescence and tumor suppressor gene p16. Int J Cancer. 2012;130(8):1715-25. doi: 10.1002/ijc.27316. [PubMed: 22025288].
  • 13. Aguilo F, Zhou MM, Walsh MJ. Long noncoding RNA, polycomb, and the ghosts haunting INK4b-ARF-INK4a expression. Cancer Res. 2011;71(16):5365-9. doi: 10.1158/0008-5472.CAN-10-4379. [PubMed: 21828241].
  • 14. Popov N, Gil J. Epigenetic regulation of the INK4b-ARF-INK4a locus: in sickness and in health. Epigenetics. 2010;5(8):685-90. [PubMed: 20716961].
  • 15. Shete S, Hosking FJ, Robertson LB, Dobbins SE, Sanson M, Malmer B, et al. Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet. 2009;41(8):899-904. doi: 10.1038/ng.407. [PubMed: 19578367].
  • 16. Wrensch M, Jenkins RB, Chang JS, Yeh RF, Xiao Y, Decker PA, et al. Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nat Genet. 2009;41(8):905-8. doi: 10.1038/ng.408. [PubMed: 19578366].
  • 17. Bishop DT, Demenais F, Iles MM, Harland M, Taylor JC, Corda E, et al. Genome-wide association study identifies three loci associated with melanoma risk. Nat Genet. 2009;41(8):920-5. doi: 10.1038/ng.411. [PubMed: 19578364].
  • 18. Motterle A, Pu X, Wood H, Xiao Q, Gor S, Ng FL, et al. Functional analyses of coronary artery disease associated variation on chromosome 9p21 in vascular smooth muscle cells. Hum Mol Genet. 2012;21(18):4021-9. doi: 10.1093/hmg/dds224. [PubMed: 22706276].
  • 19. Holdt LM, Hoffmann S, Sass K, Langenberger D, Scholz M, Krohn K, et al. Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet. 2013;9(7):1003588. doi: 10.1371/journal.pgen.1003588. [PubMed: 23861667].
  • 20. Congrains A, Kamide K, Oguro R, Yasuda O, Miyata K, Yamamoto E, et al. Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/B. Atherosclerosis. 2012;220(2):449-55. doi: 10.1016/j.atherosclerosis.2011.11.017. [PubMed: 22178423].
  • 21. Hauptman N, Glavac D. Long non-coding RNA in cancer. Int J Mol Sci. 2013;14(3):4655-69. doi: 10.3390/ijms14034655. [PubMed: 23443164].
  • 22. Yu W, Gius D, Onyango P, Muldoon-Jacobs K, Karp J, Feinberg AP, et al. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature. 2008;451(7175):202-6. doi: 10.1038/nature06468. [PubMed: 18185590].
  • 23. Yap KL, Li S, Munoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell. 2010;38(5):662-74. doi: 10.1016/j.molcel.2010.03.021. [PubMed: 20541999].
  • 24. Zhao W, Smith JA, Mao G, Fornage M, Peyser PA, Sun YV, et al. The cis and trans effects of the risk variants of coronary artery disease in the Chr9p21 region. BMC Med Genomics. 2015;8:21. doi: 10.1186/s12920-015-0094-0. [PubMed: 25958224].
  • 25. McPherson R, Pertsemlidis A, Kavaslar N, Stewart A, Roberts R, Cox DR, et al. A common allele on chromosome 9 associated with coronary heart disease. Science. 2007;316(5830):1488-91. doi: 10.1126/science.1142447. [PubMed: 17478681].
  • 26. Denny JC, Bastarache L, Ritchie MD, Carroll RJ, Zink R, Mosley JD, et al. Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. Nat Biotechnol. 2013;31(12):1102-10. doi: 10.1038/nbt.2749. [PubMed: 24270849].
  • 27. Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012;40(Database issue):930-4. doi: 10.1093/nar/gkr917. [PubMed: 22064851].
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments