International Journal of Cancer Management

Published by: Kowsar

Interactome Analysis of 11-Dehydrosinulariolide-Treated Oral Carcinoma Cell Lines Such as Ca9-22 and CAL-27 and Melanoma Cell Line

Ali Asghar Peyvandi 1 , Shahrokh Khoshsirat 1 , Akram Safaei 2 , Mostafa Rezaei-Tavirani 2 , * and Mona Azodi-Zamanian 2
Authors Information
1 Hearing Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
2 Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
Article information
  • International Journal of Cancer Management: July 2017, 10 (7); e10096
  • Published Online: July 31, 2017
  • Article Type: Research Article
  • Received: December 20, 2016
  • Revised: February 1, 2017
  • Accepted: July 1, 2017
  • DOI: 10.5812/ijcm.10096

To Cite: Peyvandi A A, Khoshsirat S, Safaei A, Rezaei-Tavirani M, Azodi-Zamanian M. Interactome Analysis of 11-Dehydrosinulariolide-Treated Oral Carcinoma Cell Lines Such as Ca9-22 and CAL-27 and Melanoma Cell Line, Int J Cancer Manag. 2017 ; 10(7):e10096. doi: 10.5812/ijcm.10096.

Abstract
Copyright © 2017, International Journal of Cancer Management. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Methods
3. Results
4. Discussion
Acknowledgements
Footnotes
References
  • 1. Liao CT, Chang JT, Wang HM, Ng SH, Hsueh C, Lee LY, et al. Analysis of risk factors of predictive local tumor control in oral cavity cancer. Ann Surg Oncol. 2008; 15(3): 915-22[DOI][PubMed]
  • 2. Liao CT, Kang CJ, Chang JT, Wang HM, Ng SH, Hsueh C, et al. Survival of second and multiple primary tumors in patients with oral cavity squamous cell carcinoma in the betel quid chewing area. Oral Oncol. 2007; 43(8): 811-9[DOI][PubMed]
  • 3. Petti S. Lifestyle risk factors for oral cancer. Oral Oncol. 2009; 45(4-5): 340-50[DOI][PubMed]
  • 4. Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol. 2009; 45(4-5): 309-16[DOI][PubMed]
  • 5. Bagan J, Sarrion G, Jimenez Y. Oral cancer: clinical features. Oral Oncol. 2010; 46(6): 414-7[DOI][PubMed]
  • 6. Gallo C, Ciavarella D, Santarelli A, Ranieri E, Colella G, Lo Muzio L, et al. Potential Salivary Proteomic Markers of Oral Squamous Cell Carcinoma. Cancer Genomics Proteomics. 2016; 13(1): 55-61[PubMed]
  • 7. Supic G, Kozomara R, Zeljic K, Stanimirovic D, Magic M, Surbatovic M, et al. HMGB1 genetic polymorphisms in oral squamous cell carcinoma and oral lichen planus patients. Oral Dis. 2015; 21(4): 536-43[DOI][PubMed]
  • 8. Ni YH, Ding L, Hu QG, Hua ZC. Potential biomarkers for oral squamous cell carcinoma: proteomics discovery and clinical validation. Proteomics Clin Appl. 2015; 9(1-2): 86-97[DOI][PubMed]
  • 9. Wong YK, Chang KW, Cheng CY, Liu CJ. Association of CTLA-4 gene polymorphism with oral squamous cell carcinoma. J Oral Pathol Med. 2006; 35(1): 51-4[DOI][PubMed]
  • 10. Kao SY, Wu CH, Lin SC, Yap SK, Chang CS, Wong YK, et al. Genetic polymorphism of cytochrome P4501A1 and susceptibility to oral squamous cell carcinoma and oral precancer lesions associated with smoking/betel use. J Oral Pathol Med. 2002; 31(9): 505-11[PubMed]
  • 11. Lo WY, Tsai MH, Tsai Y, Hua CH, Tsai FJ, Huang SY, et al. Identification of over-expressed proteins in oral squamous cell carcinoma (OSCC) patients by clinical proteomic analysis. Clin Chim Acta. 2007; 376(1-2): 101-7[DOI][PubMed]
  • 12. Jerant AF, Johnson JT, Sheridan CD, Caffrey TJ. Early detection and treatment of skin cancer. Am Fam Physician. 2000; 62(2): 357-68-381-2[PubMed]
  • 13. Dictionary of cancer terms. 2007;
  • 14. Ayala FR, Rocha RM, Carvalho KC, Carvalho AL, da Cunha IW, Lourenco SV, et al. GLUT1 and GLUT3 as potential prognostic markers for Oral Squamous Cell Carcinoma. Molecules. 2010; 15(4): 2374-87[DOI][PubMed]
  • 15. Jeon J, Nim S, Teyra J, Datti A, Wrana JL, Sidhu SS, et al. A systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening. Genome Med. 2014; 6(7): 57[DOI][PubMed]
  • 16. Ivanov AA, Khuri FR, Fu H. Targeting protein-protein interactions as an anticancer strategy. Trends Pharmacol Sci. 2013; 34(7): 393-400[DOI][PubMed]
  • 17. Safari-Alighiarloo N, Taghizadeh M, Tabatabaei SM, Shahsavari S, Namaki S, Khodakarim S, et al. Identification of new key genes for type 1 diabetes through construction and analysis of protein-protein interaction networks based on blood and pancreatic islet transcriptomes. J Diabetes. 2017; 9(8): 764-77[DOI][PubMed]
  • 18. Zamanian Azodi M, Peyvandi H, Rostami-Nejad M, Safaei A, Rostami K, Vafaee R, et al. Protein-protein interaction network of celiac disease. Gastroenterol Hepatol Bed Bench. 2016; 9(4): 268-77[PubMed]
  • 19. Safari-Alighiarloo N, Rezaei-Tavirani M, Taghizadeh M, Tabatabaei SM, Namaki S. Network-based analysis of differentially expressed genes in cerebrospinal fluid (CSF) and blood reveals new candidate genes for multiple sclerosis. PeerJ. 2016; 4[DOI][PubMed]
  • 20. Barabasi AL, Oltvai ZN. Network biology: understanding the cell's functional organization. Nat Rev Genet. 2004; 5(2): 101-13[DOI][PubMed]
  • 21. von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S, et al. Comparative assessment of large-scale data sets of protein-protein interactions. Nature. 2002; 417(6887): 399-403[DOI][PubMed]
  • 22. Safaei A, Rezaei Tavirani M, Arefi Oskouei A, Zamanian Azodi M, Mohebbi SR, Nikzamir AR. Protein-protein interaction network analysis of cirrhosis liver disease. Gastroenterol Hepatol Bed Bench. 2016; 9(2): 114-23[PubMed]
  • 23. Zamanian-Azodi M, Rezaei-Tavirani M, Rahmati-Rad S, Hasanzadeh H, Rezaei Tavirani M, Seyyedi SS. Protein-Protein Interaction Network could reveal the relationship between the breast and colon cancer. Gastroenterol Hepatol Bed Bench. 2015; 8(3): 215-24[PubMed]
  • 24. Jafari M, Sadeghi M, Mirzaie M, Marashi SA, Rezaei-Tavirani M. Evolutionarily conserved motifs and modules in mitochondrial protein-protein interaction networks. Mitochondrion. 2013; 13(6): 668-75[DOI][PubMed]
  • 25. Rezaei-Tavirani M, Zamanian-Azodi M, Rajabi S, Masoudi-Nejad A, Rostami-Nejad M, Rahmatirad S. Protein Clustering and Interactome Analysis in Parkinson and Alzheimer's Diseases. Arch Iran Med. 2016; 19(2): 101-9[PubMed]
  • 26. Zali H, Rezaei Tavirani M. Meningioma protein-protein interaction network. Arch Iran Med. 2014; 17(4): 262-72[PubMed]
  • 27. Liu CI, Chen CC, Chen JC, Su JH, Huang HH, Chen JY, et al. Proteomic analysis of anti-tumor effects of 11-dehydrosinulariolide on CAL-27 cells. Mar Drugs. 2011; 9(7): 1254-72[DOI][PubMed]
  • 28. Liu CI, Wang RY, Lin JJ, Su JH, Chiu CC, Chen JC, et al. Proteomic profiling of the 11-dehydrosinulariolide-treated oral carcinoma cells Ca9-22: effects on the cell apoptosis through mitochondrial-related and ER stress pathway. J Proteomics. 2012; 75(18): 5578-89[DOI][PubMed]
  • 29. Su TR, Tsai FJ, Lin JJ, Huang HH, Chiu CC, Su JH, et al. Induction of apoptosis by 11-dehydrosinulariolide via mitochondrial dysregulation and ER stress pathways in human melanoma cells. Mar Drugs. 2012; 10(8): 1883-98[DOI][PubMed]
  • 30. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13(11): 2498-504[DOI][PubMed]
  • 31. Yu H, Kim PM, Sprecher E, Trifonov V, Gerstein M. The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput Biol. 2007; 3(4)[DOI][PubMed]
  • 32. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009; 25(8): 1091-3[DOI][PubMed]
  • 33. Rivera CG, Vakil R, Bader JS. NeMo: Network Module identification in Cytoscape. BMC Bioinformatics. 2010; 11 Suppl 1[DOI][PubMed]
  • 34. Zhang Y, Xiaodong G, Danhua W, Ruisheng L, Xiaojuan LI, Ying XU, et al. A systems biology-based investigation into the therapeutic effects of Gansui Banxia Tang on reversing the imbalanced network of hepatocellular carcinoma. Sci Rep. 2014; 4
  • 35. Zhuang DY, Jiang L, He QQ, Zhou P, Yue T. Identification of hub subnetwork based on topological features of genes in breast cancer. Int J Mol Med. 2015; 35(3): 664-74[DOI][PubMed]
  • 36. Jeong H, Mason SP, Barabasi AL, Oltvai ZN. Lethality and centrality in protein networks. Nature. 2001; 411(6833): 41-2[DOI][PubMed]
  • 37. Ryu KY, Maehr R, Gilchrist CA, Long MA, Bouley DM, Mueller B, et al. The mouse polyubiquitin gene UbC is essential for fetal liver development, cell-cycle progression and stress tolerance. EMBO J. 2007; 26(11): 2693-706[DOI][PubMed]
  • 38. Dana RC, Welch WJ, Deftos LJ. Heat shock proteins bind calcitonin. Endocrinology. 1990; 126(1): 672-4[DOI][PubMed]
  • 39. Hara MR, Agrawal N, Kim SF, Cascio MB, Fujimuro M, Ozeki Y, et al. S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat Cell Biol. 2005; 7(7): 665-74[DOI][PubMed]
  • 40. Rutkowski DT, Kaufman RJ. A trip to the ER: coping with stress. Trends Cell Biol. 2004; 14(1): 20-8[PubMed]
  • 41. Lee AS. GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res. 2007; 67(8): 3496-9[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments